Learn more about Search Results フ - Page 8

ラストでクロスプラットフォームのTFIDFテキストサマライザーを構築する

NLPツールとユーティリティはPythonエコシステムで大幅に成長し、開発者はすべてのレベルで高品質な言語アプリをスケールさせることができるようになりましたRustはNLPにおいて比較的新しい導入された言語であり、...

商品化されたサービス101:フリーランサーを殺す一人ビジネス(次は従業員)

新しく改善されたサービスビジネスモデルは、フリーランサーや従来の代理店、さらには従業員からの仕事を吸い込んでいます

「デジタル時代のユーザーセントリックデザイン:ウェブデザインとUI/UX体験に影響を与えるトレンド」

ユーザー体験に重点を置くウェブデザインの最新トレンドを紹介しましょうダークモードの普及から3D要素の統合まで、魅力的な要素を解説します

ヘッドショットプロのレビュー:2時間で120以上のヘッドショットを作成する?

この詳細なヘッドショットプロのレビューでは、次の質問をします ヘッドショットプロは2時間で120以上のヘッドショットを生成できるのでしょうか?ここで確認してください!

SalesForce AI 研究 BannerGen マルチモダリティ バナー生成のためのオープンソース ライブラリ

効果的なグラフィックデザインは成功したマーケティングキャンペーンの基盤です。それはデザイナーと視聴者の間のコミュニケーション橋渡しを行い、ユーザーを魅了し、重要な詳細を強調し、キャンペーンの視覚的な外観を向上させます。しかし、現在の方法は時間のかかるものであり、層ごとの組み立て作業が必要です。これには専門知識が必要であり、スケーラブルにはなりません。 上記の問題を解決するために、Salesforceの研究者は、生成型AIの力を活用してデザインプロセスを効率化するオープンソースのライブラリBannerGenを導入しました。このライブラリには、3つの並列マルチモーダルバナージェネレーションメソッド、LayoutDETR、LayoutInstructPix2Pix、およびFramed Template RetrieveAdapterが含まれます。それぞれが大量のデザイングラフィックデータでトレーニングを受けており、デザインプロセスを迅速化できます。さらに、これらすべてがBannerGenのGitHubリポジトリでオープンソース化されており、Pythonモジュールとしてインポートできるため、開発者は各メソッドで実験することが容易です。BannerGenには、ライセンスされたフォントと注意深く作成されたテンプレートもあり、開発者は高品質のデザインを構築することができます。 ユーザーはバナーを作成したい画像をアップロードすることができます。その画像は、主要な要素に焦点を当てて複数のサブイメージにクロッピングされます。ユーザーはまた、希望するバナーのタイプと含めたいテキストを指定することもできます。サブイメージは選択したテンプレートに統合され、見事なビジュアルが作成されます。最終的なデザインはHTMLファイルとPNGファイルとして生成されます。 研究者はVAEGANフレームワークを取り入れて、生成されたデザインを現実のパターンに合わせるようにしました。DETRアーキテクチャもBannerGenに組み込まれ、LayoutDETRとして言及されています。研究者はDETRデコーダを変更して、マルチモーダルの前景入力を処理できるようにしました。このアーキテクチャにより、BannerGenは背景と前景要素をより良く理解することができ、より良い結果を生み出します。 BannerGenは、拡散モデルによって強化された画像から画像への編集技術であるInstructPix2Pixも組み込んでいます。それは背景画像をテキストが重ねられた画像に変換するように微調整されています。 3番目のメソッドであるFramed Template RetrieveAdapterは、生成されたデザインの多様性を向上させるために使用され、3つのコンポーネントで構成されています。メトリクスに基づいて最適なフレームを見つけるリトリーバー、フレームに適合するように入力画像とテキストをカスタマイズするアダプター、背景レイヤーとユーザーの入力を統合してHTML/CSSでデザインを生成するレンダラーです。 まとめると、BannerGenは生成型AIを活用してユーザーがシームレスにカスタマイズされたバナーを作成できる強力で多機能なフレームワークです。BannerGenのアーキテクチャは実際のレイアウトから学ぶように設計されており、背景と前景要素を理解することができます。最終的なデザインはHTMLファイルとPNGファイルとして生成され、手動で簡単に調整することができ、すぐに使用できるように任意のメディアに埋め込むことができます。BannerGenはグラフィックデザインのプロセスを時間のかかるものから解放し、ユーザーが高品質でプロフェッショナルなデザインを生成するのを支援します。 この記事はSalesForce AI Research BannerGen: An Open-Source Library for Multi-Modality Banner GenerationがMarkTechPostに最初に掲載されました。

TDSベストオブ2023:ChatGPTとLLMについて

「2023年は、データサイエンティストや機械学習の専門家にとって、波瀾万丈な1年だったと言っても過言ではないでしょうが、過去12ヶ月のフィールドで見られた激動の活動量を完全に表現することはできません」

「Pythonを学ぶための5つの無料大学講座」

Pythonプログラミングを学ぶ最高のリソースをお探しですか? これらの無料の大学のコースをチェックしてみてください

「04/12から10/12までの週のトップ重要なLLM論文」

大型言語モデル(LLM)は最近急速に進化しています新しいモデルの世代が開発されるにつれて、研究者やエンジニアは最新の進歩について情報を得る必要がありますこの記事は…

「AIにおける親密な役割:ガールフレンドとセラピスト」

この記事は、感情AIの分野についての簡単な概要と、その技術の親密な役割での潜在的な応用についてです

このAI論文は、高度な時空間予測のためのニューラルオペレータの自己回帰エラーに対するディープラーニングソリューションを探求しています

この研究は、自己回帰ニューラルオペレーターのドメイン内の重要な課題である予測の範囲拡張の能力の制約について探求しています。自己回帰モデルは有望であるものの、空間時間予測における安定性の問題に直面し、その効果を著しく妨げています。この包括的な問題は、比較的滑らかなフィールドからERA5のようなデータセットに特徴付けられる複雑で大規模なシステムまで、さまざまなシナリオにわたって普遍的です。 自己回帰ニューラルオペレーターの予測範囲を拡張しようとすると、現在の方法は非常に困難な障壁に直面します。この制約を認識して、研究チームは予測性を向上させる画期的な解決策を提案しています。提案された方法は、スペクトルニューラルオペレーターの基本的なアーキテクチャのシフトを引き起こし、不安定性の問題を軽減する戦略的な手法です。既存の手法とは対照的に、この革新的なアプローチはこれらのオペレーターに無限の予測範囲を与え、大きな進歩を示します。 現在のところ、自己回帰ニューラルオペレーターは予測範囲を限定して予測する能力において重要な障壁を示します。従来の手法の不安定性の課題は、特に複雑な空間時間予測シナリオにおいてその効果を制約しています。この問題に対処するため、研究チームはスペクトルニューラルオペレーターのアーキテクチャを根本的に再構築し、予測範囲の拡張の可能性を開放する新しい解決策を提案しています。 提案された方法の核心には、ニューラルオペレーターブロックの再構築があります。エイリアシングや不連続性などの課題に対処するために、研究者は非線形性の後に学習可能なフィルターを連続的に適用し、新たに生成された高周波を効果的に処理する能力を持ちます。革新的な要素は、静的畳み込みフィルターを動的フィルターに置き換え、特定のデータに適応することです。この適応性は、周波数ドメインで操作されるモードごとのマルチレイヤーパーセプトロン(MLP)によって実現されます。 提案された方法の本質は、ニューラルオペレーターブロックを再想像することにあります。エイリアシングや不連続性などの課題に対処するため、研究者は非線形性の後に学習可能なフィルターを一貫して適用し、新たに生成された高周波を処理する能力を持つ革新的なフレームワークを導入します。画期的な要素は、固定された静的畳み込みフィルターを動的フィルターに置き換え、特定のデータセットの複雑さに適応することです。この適応性は、周波数ドメインで動作するモードごとのマルチレイヤーパーセプトロン(MLP)によって実現されます。 https://openreview.net/forum?id=RFfUUtKYOG 実験の結果は、この方法の有効性を裏付けており、安定性の大幅な改善が明らかになっています。これは、回転浅水方程式やERA5データセットなどのシナリオにこの手法を適用した場合に特に明らかです。周波数適応型MLPによって生成される動的フィルターは、さまざまなデータセットに対してモデルの適応性を確保することが重要です。静的フィルターを動的なフィルターに置き換えることにより、この方法はデータに依存するエイリアシングパターンの複雑さを巧みに処理します。これは固定されたストラテジーでは達成できない成果です。 https://openreview.net/forum?id=RFfUUtKYOG まとめると、この研究は自己回帰ニューラルオペレーターにおける予測の範囲拡張の持続的な課題を克服する画期的な進歩を表しています。周波数適応型MLPによって生成される動的フィルターを取り入れたニューラルオペレーターブロックの再構築は、不安定性の問題を軽減し、無限の予測の範囲を実現するための非常に効果的な戦略です。予測の複雑さに直面する研究コミュニティにとって、この研究はより堅牢で信頼性の高い空間時間予測モデルに向けた将来の取り組みを指し示すビーコンとしての役割を果たします。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us