Learn more about Search Results コーパス - Page 8

「生成AIにおける高度なエンコーダとデコーダの力」

はじめに 人工知能のダイナミックな領域では、技術と創造性の融合が人間の想像力の限界を押し上げる革新的なツールを生み出しています。この先駆的な進歩の中には、生成型AIにおけるエンコーダーとデコーダーの洗練された世界が存在します。この進化は、芸術、言語、さらには現実との関わり方を根本的に変革します。 出典 – IMerit 学習目標 生成型AIにおけるエンコーダーとデコーダーの役割と創造的なアプリケーションへの重要性を理解する。 BERT、GPT、VAE、LSTM、CNNなどの高度なAIモデルと、データのエンコードとデコードにおける実践的な使用方法を学ぶ。 エンコーダーとデコーダーのリアルタイムアプリケーションをさまざまな分野で探求する。 AIによって生成されたコンテンツの倫理的な考慮と責任ある使用についての洞察を得る。 高度なエンコーダーとデコーダーを応用することによって創造的な協力とイノベーションのポテンシャルを認識する。 この記事はData Science Blogathonの一環として公開されました。 エンコーダーとデコーダーの台頭 テクノロジーの絶え間ない進化の中で、エンコーダーとデコーダーは人工知能(AI)と生成型AIにクリエイティブな転機をもたらしています。それらはAIが芸術、テキスト、音声などを理解し、解釈し、創造するために使用する魔法の杖のような存在です。 ここがポイントです:エンコーダーは非常に注意深い探偵のようなものです。画像、文章、音声など、様々な物事を詳細に分析します。さまざまな小さな詳細やパターンを探し、クルーを組み立てる探偵のような役割を果たします。 一方、デコーダーはクリエイティブな魔術師のような存在です。エンコーダーが見つけた情報を新たでドキドキするものへと変えます。それは魔術師が魔法の呪文に変え、芸術、詩、さらには別の言語まで作り出すようなものです。エンコーダーとデコーダーの組み合わせは、創造的な可能性の扉を開きます。 <p p="" 簡単に言えば、aiのエンコーダーとデコーダーは、探偵と魔術師が共同で働いているようなものです。探偵が世界を理解し、魔術師がその理解を素晴らしい創造物に変えます。これが芸術、言語、さらには他の様々な分野でゲームを変えつつある方法で、技術が革新的でありながらも卓越した創造性を備えていることを示しています。 構成要素:エンコーダーとデコーダー 生成型AIの核心には、データを一つの形式から別の形式に変換するエンコーダーとデコーダーという基本的な構成要素があり、これが創造的AIの核心となります。彼らの役割を理解することで、彼らが解き放つ膨大な創造力の可能性を把握する助けになります。 エンコーダー:…

大きな言語モデル:TinyBERT – 自然言語処理のためのBERT蒸留

最近、大規模言語モデルの進化が急速に進んでいますBERTは最も人気のある効率的なモデルの1つとなり、高い精度でさまざまなNLPタスクを解決することができるようになりましたその後...

「再トレーニングの必要なしでモデルのメモリを再形成する」

大きな言語モデル(LLMs)は世界中で大流行していますわずか1年足らずでありながら、今や多くのユーザーによって普及し、使用されていますこれらのモデルはしばしば大量のテキストで訓練されます...

ニューラルネットワークの簡単な歴史

生物学的なニューロンからLLMsへ:AIが賢くなるまでの道のり

「LlamaIndex vs LangChain 比較分析」

はじめに Large Language Models(LLM)には、GPT-3などがありますが、研究者や開発者は常にその機能を向上させる新しい方法を探しています。LlamaIndexとLangChainという2つの優れたツールが登場し、これらのモデルの相互作用と機能性を向上させるための強力なオプションとして注目されています。この記事では、LlamaIndexとLangChainの特徴と機能性について探求し、どちらがLLMに最適であるかを比較します。 学習目標: LangChainとLlamaIndexの定義、構成、および使用例を理解する。 使用例と構成に基づいて2つのLLMを比較する。 LangChainとLlamaIndexの主な特徴と利点を探求する。 LangChainとは何ですか? LangChainは、柔軟な機能と機能性を提供することでLLMの性能を向上させるために設計された動的なツールです。チャットボットや仮想アシスタントなど、連続的で文脈重視の会話が必要なアプリケーションに特に役立ちます。これにより、LLMは長時間にわたって一貫した対話を維持することができます。 LlamaIndexとは何ですか? LlamaIndexは、特定のLLMの相互作用に最適化された包括的なソリューションです。高度なコンポーネントと機能を提供します。クエリの精度と高品質な応答が重要なアプリケーションで優れたパフォーマンスを発揮します。これにより、正確で文脈に即した回答を得ることが重要な状況に最適です。 LangChainとLlamaIndex:使用例に基づく比較 では、LangChainとLlamaIndexの使用例を比較してみましょう。 LangChainは、柔軟性と適応性があり、ダイナミックな相互作用やコンテキストが急速に変化するシナリオに適しています。メモリ管理と連鎖の機能は、長い文脈に基づいた対話を維持するのに優れています。また、正確なプロンプトの作成が必要な場合にも優れた選択肢です。 一方、LlamaIndexは、クエリの精度と応答の品質が最優先の場合に理想的です。LLMとの相互作用を洗練させ、最適化するのが得意です。応答合成と組成の機能は、正確で一貫性のある応答の生成が重要な場合に有益です。 LangChainのデコーディング LangChainは、Large Language Models(LLM)を向上させるために設計された柔軟性のあるツールです。6つの主要なコンポーネントで構成されており、それぞれに独自の特徴と利点があり、LLMの相互作用を最適化することを目指しています。以下にこれらのコンポーネントの詳細を示します: コンポーネント 説明 主な特徴と利点 モデル…

RAGのNLPにおける検索と生成の統一的な革新的アプローチ

イントロダクション AIの急速に進化する領域に、ゲームチェンジングなイノベーションが登場し、機械が人間の言語と関わる方法を再構築しています。それが、Retrieval Augmented Generation(RAG)です。RAGは単なるテックの流行語ではありません。それは人機コミュニケーションを革命化しています。我々と一緒にRAGの秘密を解き明かし、その応用とAIへの深い影響を探求しましょう。RAGはNLPの最前線に位置し、リトリーバルとジェネレーションをシームレスに統合することで、機械が人間の言語を把握し、相互作用する能力を向上させています。 学習目標 リトリーバルベースとジェネレーションベースのモデルの基礎的な概念を理解する(NLP)、それによる応用、違い、類似点。 NLPにおける純粋なリトリーバルまたはジェネレーションモデルの制限を分析し、実世界の例を探求する。 リトリーバルとジェネレーションモデルの統合の重要性を認識し、この統合が必要なシナリオを理解する。 リトリーバル拡張生成(RAG)アーキテクチャに深く入り込み、その構成要素を理解する。 RAGの実装における実践的なスキルを開発し、埋め込みの生成や透明性と正確性の側面を理解する。 この記事はData Science Blogathonの一部として掲載されました。 リトリーバルとジェネレーションの理解 リトリーバルベースとジェネレーションベースのモデルとその主な違いと類似点、自然言語処理におけるアプローチについて探求しましょう。 リトリーバルベースのNLPモデル NLPのリトリーバルベースモデルは、入力クエリに基づいて事前に定義された応答セットから適切な応答を選択するように設計されています。これらのモデルは、入力テキスト(質問またはクエリ)を事前に定義された応答のデータベースと比較します。システムは、入力と保存された応答との類似度をコサイン類似度や他の意味的マッチング手法を使用して測定し、最適な応答を特定します。リトリーバルベースモデルは、質問応答などのタスクに効率的であり、応答がしばしば事実ベースで整理された形式で利用可能な場合に適しています。 ジェネレーションベースのNLPモデル 一方、ジェネレーションベースのモデルは、ゼロから応答を作成します。これらのモデルは、しばしばニューラルネットワークに基づく複雑なアルゴリズムを使用して、人のようなテキストを生成します。リトリーバルベースモデルとは異なり、ジェネレーションベースモデルは事前に定義された応答に依存しません。代わりに、入力に提供された文脈に基づいて次の単語や単語のシーケンスを予測することで、応答の生成を学習します。この新しい、文脈に即した応答を生成する能力により、ジェネレーションベースモデルは非常に多目的であり、クリエイティブなライティング、機械翻訳、対話システムなど、多様で文脈豊かな応答が必要なタスクに適しています。 主な違いと類似点 要約すると、リトリーバルベースモデルは、事前に定義された応答が利用可能であり、速度が重要なタスクで優れています。一方、ジェネレーションベースモデルは、創造性、文脈認識、多様でオリジナルなコンテンツの生成が必要なタスクで輝きます。RAGなどのモデルでこれらのアプローチを組み合わせることは、両方の手法の長所を活用してNLPシステムの総合的なパフォーマンスを向上させるバランスの取れた解決策を提供します。 純粋なリトリーバルまたはジェネレーションモデルの制限 人間と機械の会話がますます洗練される中で、人工知能のダイナミックな世界では、リトリーバルベースとジェネレーションベースの2つの主要なモデルが主役となっています。これらのモデルにはそれぞれ長所がありますが、制限もあります。 限定された文脈理解…

「ジェネレーティブAIがビジネス、健康医療、芸術を再構築する方法」

紹介 生成的な人工知能、一般にはGenAIと呼ばれるものは、AI革命の最前線に位置し、ロボットの無限の創造力と問題解決能力を可能にしています。GenAIは、最先端の技術と人間の創造力を融合させたものであり、人工知能が可能な限りの領域を追求する世界において、単なる予測を超えた内容やデータ、解決策を人間の情報に近い形で生成するために機械を使用することによって分類されます。この記事では、芸術、医学、ビジネス、交通、ゲームなどの世界を探求しながら、GenAIの重要な影響について、基本的なアイデアから実際の応用や複雑な実装までを探ります。この詳細な研究では、生成的なAIが私たちの周りのすべてを再構築している様子を検証します。GenAIの能力を深く理解し、実際の応用例に触発されることでしょう。 学習目標 この記事を読むことで、あなたは生成的なAIの基礎を理解することができます。 実践的な効果をもたらすために生成的なAIをどのように使用するかを知ることができます。 これらのユースケースがいかに生成的なAIを活用しているかについてさらに学ぶことができます。 将来的に生成的なAI技術の可能性についてさらに学ぶことができます。 この記事はデータサイエンスブロガソンの一環として公開されました。 生成的なAIの理解 「生成的なAI」として知られる一連の人工知能モデルとアルゴリズムは、人間が生み出したデータや素材、その他のアウトプットに驚くほど似た結果を生み出すことができます。テキスト、音楽、グラフィックス、さらにはソフトウェアのコードや学術研究論文など、さまざまな出力が含まれます。 生成的なAIとは何ですか? 「新しいコンテンツ、データ、または解決策を作り出す人工知能」とも呼ばれる生成的なAIは、人工知能の最先端のサブフィールドです。通常のAIモデルが主に分析と予測に焦点を当てるのに対し、生成的なAIはディープラーニングのアルゴリズムの力を活用して、人間のデータに密接に似た結果を生み出すことができます。 これらの最先端のモデル、例えば変分オートエンコーダ(VAE)や生成的対抗ネットワーク(GAN)などは、複雑なデータ分布を理解し、独自の文脈に関連する情報を提供する能力を持っており、広範な応用領域で貴重な存在となっています。 生成的なAIのユースケース さて、さまざまなユースケースと生成的なAIが私たちの周りのすべてを再構築する方法について深く掘り下げましょう。 芸術と創造性 機械が音楽やアートを創造する能力により、生成的なAIは創造的な革命を引き起こしました。ミュージシャンやアーティストは、これらのモデルを使用して新しい表現方法を実験しています。たとえば、AIVA(Artificial Intelligence Virtual Artist)音楽作曲システムでは、ディープラーニングが使用され、人間のミュージシャンに匹敵する古典音楽の作品を創造しています。 自然言語処理(NLP) 生成的なAIモデルは、自然言語処理におけるチャットボットやテキスト生成の改善に道を開きました。OpenAIが開発したGPT-3(Generative Pre-trained Transformer…

「大型言語モデル(LLM)のマスターに至る7つのステップ」

大型言語モデル(LLM)は、自然言語処理の新時代を開拓しましたでは、それについてもっと学びましょうこのガイドを使用して、大型言語モデルの基礎から始めて、7つの簡単なステップでLLMアプリを構築して展開する方法を学びましょう

「SaaS AIの機能が堀や障壁なしでアプリケーションと出会う」

最近、いくつかのエンタープライズSaaS企業が創発型AI機能を発表しましたが、これは持続可能な競争上の優位性を欠いたAIスタートアップにとって直接的な脅威です

NVIDIAの研究者が「Retro 48B」を導入:前の指示調整よりも前にリトリーバルが行われた最大のLLM Pretrained

NvidiaとIllinois大学の研究者は、「Retro 48B」という以前の検索増強モデル(Retro(7.5Bパラメータ)など)よりも遥かに大きな言語モデルを紹介しました。Retro 48Bは広範なコーパスでリトリーバルを使って事前学習され、パープレキシティが改善されます。InstructRetroのエンコーダは抽出されることができ、継続的な検索増強の事前学習が質問応答においてデコーダーのパフォーマンスを向上させることを示唆しています。 検索増強言語モデルは、事前学習および推論中に開放領域の質問応答に利益をもたらします。このアプローチにより、モデルのパープレキシティが低下し、事実性が向上し、ファイントゥーニング後のタスクパフォーマンスが向上します。既存の検索増強モデルはデコーダーオンリーモデルと比較してサイズが制約されており、インストラクションチューニング後のゼロショットの汎用性が制限されています。自然言語理解に重要なインストラクションチューニングは、FLAN、OpenAssistant、Dollyなどの高品質のデータセットからのサポートを得ており、チャットや質問応答のタスクにおいて優れたパフォーマンスを実現しています。 Retroなどのリトリーバルを使って言語モデルを事前学習することは、パープレキシティの低下と事実の正確性の向上において有望な成果を示しています。ただし、既存の検索増強モデルはより多くのパラメータとトレーニングデータが必要であり、大規模な言語モデルの一般化におけるタスクパフォーマンスに影響を及ぼします。この研究では、43B GPTモデルに追加のトークンを使って事前学習を続けることにより、最大の検索増強モデルであるRetro 48Bを紹介しています。このプロセスから得られたInstructRetroは、従来のGPTモデルと比較してゼロショットの質問応答を大幅に改善します。エンコーダを抽出した場合でも、InstructRetroのデコーダーは同様の結果を達成し、質問応答におけるコンテキスト統合のための検索増強事前学習の効果を示しています。 この研究では、GPTモデルを事前学習してRetro 48Bを作成し、ゼロショットの質問応答能力を向上させるために指示を与え、さまざまなタスクでのパフォーマンスを評価するという包括的なプロセスを探求しています。最大の検索増強言語モデルであるInstructRetro 48Bは、GPTモデルと比較して幅広いオープンエンドの質問応答タスクでゼロショットの精度を大幅に向上させます。Retroの拡大アプローチによって、大規模な検索増強モデルの潜在能力が自然言語理解において示されています。 リトリーバルを使って事前学習されたRetro 48Bは、元のGPTモデルよりもパープレキシティが優れています。インストラクションチューニング後、InstructRetroと呼ばれるこのモデルは、ゼロショットの質問応答において、短文タスクでは7%、長文タスクでは10%の改善があります。驚くべきことに、InstructRetroのデコーダーバックボーンのみでも同等の結果が得られ、QAのコンテキスト統合のための事前学習の効果を示しています。 最大の検索増強言語モデルであるInstructRetro 48Bは、GPTモデルと比較してさまざまな開放型なQAタスクにおいてゼロショットの精度を大幅に向上させます。Retroの追加方法を使った検索増強事前学習により、パープレキシティが改善されます。この研究の結果は、インストラクションチューニングの前に回収を使った継続的な事前学習がQAにおいてGPTデコーダーを向上させるための有望な方向を示しています。驚くべきことに、デコーダーは同等の精度を達成しており、コンテキスト統合のための事前学習の効果を示しています。InstructRetroは長文QAタスクで優れたパフォーマンスを発揮し、検索増強事前学習の潜在能力を示しています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us