Learn more about Search Results コンポーネント - Page 8

2024年の予測17:RAG to RichesからBeatlemaniaとNational Treasuresへ

メリアム・ウェブスターの前に譲れ:今年、企業は年間のワードに追加するための多くの候補を見つけました。「生成的AI」と「生成的事前学習変換器」の後には、「大規模言語モデル」と「検索増強生成」(RAG)のような用語が続き、さまざまな産業が変革的な新技術に注目しました。 生成的AIは今年の初めにはまだ注目されていなかったが、終わりには大きなインパクトを与えました。多くの企業が、テキスト、音声、動画を取り込み、生産性、イノベーション、創造性を革新する新しいコンテンツを生み出す能力を利用するために全力で取り組んでいます。 企業はこのトレンドに乗っています。OpenAIのChatGPTなどのディープラーニングアルゴリズムは、企業のデータをさらにトレーニングすることで、63のビジネスユースケース全体で年間2.6兆ドルから4.4兆ドル相当の価値を生み出すことができると、マッキンゼー・アンド・カンパニーによって評価されています。 しかし、大量の内部データを管理することは、AIの拡大における最大の障害とされてきました。NVIDIAのAIの専門家の一部は、2024年は友達との電話に関するすべてだと予測しており、クラウドサービスプロバイダーやデータストレージおよび分析会社など、大規模データを効率的に処理し、調整し、展開するノウハウを持つ企業や個人とのパートナーシップや協力関係を構築することが重要だと述べています。 大規模言語モデルがその中心にあります。NVIDIAの専門家によると、LLM研究の進展は、ますますビジネスや企業向けのアプリケーションに適用されるようになります。RAG、自律型インテリジェントエージェント、マルチモーダルインタラクションのようなAIの機能は、ほぼすべてのプラットフォームを介してよりアクセス可能で容易に展開できるようになります。 NVIDIAの専門家の予想を聞いてください: MANUVIR DASエンタープライズコンピューティング部門副社長 一揃いは全てに合わない:カスタマイズが企業にやってきます。企業は1つまたは2つの生成的AIアプリケーションを持つのではなく、さまざまな部門に適した独自のデータを使用した何百ものカスタマイズされたアプリケーションを持つことになるでしょう。 これらのカスタムLLMは、稼働中にデータソースを生成的AIモデルに接続するためのRAGの機能を備え、より正確で明確な応答を提供します。Amdocs、Dropbox、Genentech、SAP、ServiceNow、Snowflakeなどのリーディングカンパニーは、既にRAGとLLMを使用した新しい生成的AIサービスを構築しています。 オープンソースソフトウェアが先頭を走っています:オープンソースの事前学習モデルのおかげで、特定のドメインの課題を解決する生成的AIアプリケーションがビジネスの運用戦略の一部になるでしょう。 企業がこれらの先行モデルをプライベートまたはリアルタイムのデータと組み合わせると、組織全体で加速された生産性とコストの利益を見ることができるようになります。クラウドベースのコンピューティングやAIモデルファウンドリーサービスから、データセンターやエッジ、デスクトップまで、ほぼすべてのプラットフォームでAIコンピューティングとソフトウェアがよりアクセス可能になります。 棚卸しのAIとマイクロサービス:生成的AIは、開発者が複雑なアプリケーションを構築しやすくするアプリケーションプログラミングインターフェース(API)エンドポイントの採用を促しています。 2024年には、ソフトウェア開発キットとAPIが進化し、開発者がRAGなどのAIマイクロサービスを利用してオフシェルフのAIモデルをカスタマイズすることができるようになります。これにより、企業は最新のビジネス情報にアクセスできる知能を持つアシスタントや要約ツールを使用して、AIによる生産性の完全な可能性を引き出すことができます。 開発者は、これらのAPIエンドポイントをアプリケーションに直接埋め込むことができ、モデルとフレームワークをサポートするために必要なインフラストラクチャの維持について心配する必要はありません。エンドユーザーは、自分のニーズに適応するより直感的でレスポンシブなアプリケーションを体験することができます。 IAN BUCKハイパースケールとHPC部門副社長 国家的な財産:人工知能は新しい宇宙競争となり、すべての国が研究と科学の重要な進展を推進し、GDPを向上させるために自国の卓越の中心を作ろうとしています。 数百個のアクセラレートされた計算ノードを使用するだけで、国は高効率で大規模なパフォーマンスを発揮するエクサスケールAIスーパーコンピュータを迅速に構築することができます。政府資金による創発型AI卓越センターは、新しい雇用を創出し、次世代の科学者、研究者、エンジニアを育成するためにより強力な大学のプログラムを構築することで、国の経済成長を後押しします。 飛躍的な進歩:企業リーダーは、二つの主要な要因に基づいて量子コンピューティングの研究イニシアチブを立ち上げます。まず、従来のAIスーパーコンピュータを使用して量子プロセッサをシミュレートする能力、そして、ハイブリッドクラシカル量子コンピューティングのためのオープンかつ統一された開発プラットフォームの利用が可能になることです。これにより、開発者は、量子アルゴリズムを構築するためにカスタムで特殊な知識を必要とせず、標準のプログラミング言語を使用することができます。 かつてはコンピュータ科学の奇妙なニッチと考えられていた量子コンピューティングの探求は、素材科学、製薬研究、サブアトミック物理学、物流などの分野で急速な進歩を追求する企業がアカデミアや国立研究所に加わることで、より一般的なものになるでしょう。 KARI BRISKIAIソフトウェア担当副社長 RAGから富へ:2024年、企業がこれらのAIフレームワークを採用するにつれ、再試行補完生成はさらに注目されるでしょう。…

「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」

産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]

新しいLAMPスタック:生成AI開発の革新を照らす

LAMPスタックは、さまざまなドメインでの生成型AIの開発と展開において必須となってきています

「React開発者にとってのAI言語モデルの力包括的なガイド」

このブログでは、AI言語モデルとReactのシナジーについて探求し、このコラボレーションが開発者の能力を向上させる方法を探ります

2024年に使用するためのトップ5の生成AIフレームワーク

イントロダクション 魅力的なジェネラティブAIフレームワークの世界へようこそ。ここでは、革新と創造性がデジタルの風景で融合する大いなる力、ジェネラティブ人工知能の力について語ります。ジェネラティブAIの力は単なる技術的な驚異にとどまりません。それは、私たちが機械とのやり取りをし、コンテンツを生み出す方法を形作る力強い力です。想像してください:わずかなプロンプトで物語や画像、さらには世界までも作り出す能力。それは魔法ではありません。それが人工知能の進化です。 ジェネラティブAIは単なるアルゴリズムの集合体ではありません。それはオンラインデータの広大な領域によって駆動される創造のパワーハウスです。AIに対してテキスト、画像、ビデオ、音声、複雑なコードの生成をプロンプトで指示することができると想像してみてください。GenAIは学習し進化し続けることで、さまざまな産業におけるその応用は増大しています。その秘密はトレーニングにあります。複雑な数学と大規模なコンピューティングパワーが結集してAIにアウトカムを予測させ、人間の行動や創造を模倣するように教え込むのです。 ジェネラティブAIの世界への旅は、その仕組みの謎を解明することから始まります。ニューラルネットワークはどのように新しいコンテンツを生み出すためのパターンを特定するのでしょうか?ChatGPTやDALL-Eなどのツールを支える基本モデルは何でしょうか?ジェネラティブAIの複雑な利用法や機能について一緒に探求していきましょう。この技術革命の最前線に立つトップ5のフレームワーク。機械が想像力に命を吹き込み、デジタルキャンバスが描く可能性は限りなく広がる旅へご参加ください。 実践的な学習でジェネラティブAIの力を向上させましょう。 GenAI Pinnacle Programをチェックしてください! ジェネラティブAIフレームワークとは ジェネラティブAIフレームワークは、GenAIのバックボーンとなり、機械が多様で文脈に即したコンテンツを作成できるようにするインフラストラクチャを提供します。これらのフレームワークは、LLMs、GANs、VAEsなどのAIモデルのためのガイドラインとなり、広範なデータセット内のパターンを理解することを可能にします。これらのフレームワークを利用することで、組織は教師なしおよび半教師あり学習アプローチのパワーを利用してAIシステムをトレーニングすることができます。このトレーニングは、NLPから画像生成までのタスクを基礎付けており、機械がプロンプトを解釈する能力を向上させます。 Langchain LangChainは、GenAIプロフェッショナル向けの革命的なソフトウェア開発フレームワークとして展開されます。LangChainは、日常のタスクやプロジェクトの風景を再構築するために作られ、大規模言語モデル(LLMs)を活用することを重視しています。MITライセンスのオープンソースの思想の下、LangChainはエージェント、メモリ、チェーンを包括した標準化されたインターフェースを導入します。 LangChainのエージェントは、LLMsが情報を元にした意思決定を行うことを可能にし、ダイナミックなチャットボット、ゲーム、さまざまなアプリケーションの創造を促進します。メモリ機能は価値があり、LLMへの呼び出し間で状態を維持することができます。この機能は、チャットボットのようなアプリケーションにとって基盤となり、一貫性のある会話や前のクエリのアウトカムの保存を可能にします。チェーンは単一のLLM呼び出しを超えて拡張し、シーケンスのオーケストレーションを容易にします。これは要約ツールや質問応答システム、多様な複雑な相互作用を必要とするアプリケーションのための恩恵です。 LangChainのデータ拡張生成機能により、GenAIプロフェッショナルは外部データに基づいたテキストの生成能力をさらに高めることができます。魅力的なニュース記事から商品説明までの作成にLangChainはコンテンツ生成の能力を増幅させます。 LangChainは、顧客サービスや教育のためのチャットボット、娯楽や研究のためのゲーム、そして要約ツールや質問応答システムなど、さまざまなアプリケーションでその能力を発揮してきました。コンテンツ生成、翻訳、コード生成、データ分析、医療診断などさまざまなアプリケーションをカバーしており、ジェネラティブ人工知能の進化する風景において、LangChainはイノベーションと効率性を推進します。 LlamaIndex LlamaIndexは、GenAIプロフェッショナルの武器の中で重要なツールとして浮上しています。GPT-4などのカスタムデータとLLMsの間にシームレスなつながりを提供します。この革新的なライブラリは、データとLLMsを扱う複雑なプロセスを簡素化することで、GenAIプロフェッショナルの日々の業務やプロジェクトを大幅に向上させます。LlamaIndexの多様なユーティリティは、データの取り込み、構造化、検索、統合の各段階で重要なサポートを提供します。 まず、LlamaIndexはAPI、データベース、PDF、外部アプリケーションなどさまざまなソースからデータを「摂取」することに優れており、忠実なデータ収集者として機能します。次に、LLMが簡単に理解できるようにデータを「構造化」する段階に移ります。この構造化されたデータは、「検索」と「取得」の段階で基盤となり、必要なときに正確なデータを見つけて取得するのをLlamaIndexが容易にします。最後に、LlamaIndexは「統合」プロセスをスムーズ化し、さまざまなアプリケーションフレームワークとのデータのシームレスな統合を可能にします。 LlamaIndexは、収集のための「データコネクタ」、組織化のための「データインデックス」、翻訳者としての「エンジン」(LLM)の3つの主要なコンポーネントで動作します。このセットアップにより、GenAIの専門家はLLMの能力とカスタムデータを組み合わせたRetrieval Augmented Generation(RAG)において強力な基盤を提供するLlamaIndexを利用することができます。クエリエンジン、チャットエンジン、エージェントなどのモジュラーな構造は、対話レベルの対話を可能にし、ダイナミックな意思決定を促進します。Q&Aシステム、チャットボット、またはインテリジェントエージェントを作成する場合、LlamaIndexはGenAIの専門家にとって欠かせない味方であり、LLMとカスタマイズされたデータを活用したRAGへの進出を強力にサポートします。 Jarvis マイクロソフトのJARVISプラットフォームはAIのイノベーションをリードし、GenAIの専門家に日常の業務を向上させるための無類のツールを提供しています。JARVISはChatGPTやt5-baseなどのAIモデルと連携し、統一された高度な結果を提供します。タスクコントローラーとしてのJARVISは、画像、ビデオ、オーディオなどのさまざまなオープンソースのLarge Language…

テンセントAI研究所では、GPT4Videoを紹介していますこれは統合マルチモーダル大規模言語モデルであり、指示に従った理解と安全意識のある生成を目指しています

テンセントAIラボとシドニー大学の研究者たちによって、ビデオの理解と生成シナリオの問題がGPT4Videoで解決されました。この統一されたマルチモデルのフレームワークは、ビデオの理解と生成の能力を持つLLM(言語・ロボットマルチモデル)をサポートしています。 GPT4Videoは、安定した拡散生成モデルに統合された指示に従うアプローチを開発し、効果的かつ安全にビデオの生成シナリオを処理します。 先行研究では、視覚入力とテキスト出力を処理する多モーダル言語モデルが開発されています。例えば、いくつかの研究者は、複数のモダリティ用の共有埋め込み空間の学習に焦点を当てています。そして、マルチモーダル言語モデルが指示に従うことができるようにすることに関心が集まっており、最初のマルチモーダルな指示の調整基準データセットであるMultiInstructが紹介されました。LLMは自然言語処理を革新しました。テキストから画像/ビデオの生成は、さまざまな技術を用いて探究されてきました。LLMの安全性への懸念も、最近の研究で取り組まれています。 GPT4Videoフレームワークは、LLMに高度なビデオの理解と生成能力を与えるために設計された万能で多様なシステムです。現在のMLLM(マルチモーダル言語モデル)の限界に応えるために、GPT4Videoはマルチモーダルな出力を生成する能力において不足しているにもかかわらず、マルチモーダルな入力を処理する能力に優れています。GPT4Videoは、LLMが解釈するだけでなく、豊かなマルチモーダルコンテンツを生成することができるようにします。 GPT4Videoのアーキテクチャは、3つの重要なコンポーネントで構成されています: ビデオ理解モジュールは、ビデオの特徴抽出器とビデオの要約器を使用して、ビデオ情報をLLMの単語埋め込み空間とエンコードし整列させます。 LLM本体は、LLaMAの構造を活用し、元の事前学習済みパラメータを維持しながら、Parameter-Efficient Fine Tuning(PEFT)手法であるLoRAを用いています。 ビデオ生成パートは、データセットに従って緻密に構築された指示によって、LLMにプロンプトを生成するように条件付けます。 GPT4Videoは、ビデオの理解と生成において優れた能力を示し、ビデオの質問回答タスクでValleyを11.8%上回り、テキストからビデオへの生成タスクでNExt-GPTを2.3%上回りました。このモデルは、追加のトレーニングパラメータなしでLLMにビデオ生成の機能を備え、さまざまなモデルと連携してビデオ生成に利用することができます。 結論として、GPT4Videoは、言語とビジョンモデルを高度なビデオの理解と生成機能で拡張する強力なフレームワークです。専門的にビデオのモダリティを扱う一方、将来のアップデートでは画像や音声など、他のモダリティにも拡大する予定です。

「プロダクションに適したRAGアプリケーションの12のチューニング戦略ガイド」

「実稼働のための検索増強生成(RAG)アプリケーションのパフォーマンス向上に調整できる戦略とパラメータ」

「RetinaNetとKerasCVを使用した物体検出」

画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...

このAI研究によって、写真-SLAMが発表されました:ポータブルデバイスでのリアルタイム写真写実的マッピングを向上させる

コンピュータビジョンとロボット工学において、カメラによる同時位置推定と地図作成(SLAM)は、自律システムが自ら環境をナビゲートし理解することを目指す重要なトピックです。幾何学的マッピングは、従来のSLAMシステムの主な焦点であり、正確ながらも美的に基本的な環境表現を生成します。しかし、最近のニューラルレンダリングの進展により、SLAMプロセスに写真のようなリアルなイメージ再構成を取り入れることが可能であり、これによってロボットシステムの知覚能力が向上する可能性があります。 既存の手法は、暗黙的な表現に大きく依存しており、計算リソースに制約のあるデバイス上での展開には不向きですが、ニューラルレンダリングとSLAMの統合は有望な結果を生み出しています。たとえば、ESLAMはマルチスケールのコンパクトテンソルコンポーネントを使用し、Nice-SLAMは環境を反映した学習可能な特徴を持つ階層型グリッドを使用しています。その後、多数のレイサンプルの再構築損失を減らすことで、カメラ位置を推定し特徴を最大化するために協力します。最適化のプロセスは時間がかかるため、効果的な収束を保証するためにRGB-Dカメラや密な光流推定器、または単眼深度推定器など複数のソースから関連する深度情報を統合する必要があります。さらに、マルチレイヤーパーセプトロン(MLP)が暗黙的な特徴をデコードするため、最良の結果を得るためにレイサンプリングを正確に規格化するための境界領域を指定することが通常必要です。これにより、システムのスケーリングの可能性が制限されます。これらの制約から、SLAMリアルタイム探索と未知の領域でのマッピング能力を携帯プラットフォームを使用して達成することはできません。 本研究では、香港科技大学と中山大学の研究チームがPhoto-SLAMを提案しています。この画期的なフレームワークは、オンラインでフォトリアルなマッピングと正確な位置推定を実行し、従来の手法のスケーラビリティとコンピューティングリソースの制約を解決します。研究チームは、回転、スケーリング、密度、球面調和(SH)係数、およびORB特性を保持するポイントクラウドのハイパープリミティブマップを追跡します。ハイパープリミティブマップは、元の画像とレンダリングされた画像の間の損失を逆伝播することにより、対応するマッピングを学習し、因子グラフソルバを使用してトラッキングを最適化することを可能にします。3Dガウススプラッティングを使用して画像を生成します。3Dガウススプラッティングレンダラを導入することで、ビュー再構築のコストを下げることができますが、特に単眼の状況ではオンラインの増分マッピングの高品位なレンダリングを提供することはできません。さらに、ジオメトリベースの密度化技術とガウシアンピラミッド(GP)に基づいた学習手法を示唆し、密な深度情報に依存せずに高品質なマッピングを実現する方法を提案しています。 図1: Photo-SLAMは、同時位置推定とフォトリアルなマッピングのためにRGB-D、ステレオ、および単眼カメラをサポートする革命的なリアルタイムフレームワークです。1秒あたり最大1000フレームのレンダリング速度で高品質なシーンビューを再構築できます。 重要なことは、GP学習により、マルチレベルの特徴を段階的に獲得することが容易になり、システムのマッピング性能が大幅に向上します。研究チームは、RGB-Dカメラ、ステレオカメラ、単眼カメラによって撮影されたさまざまなデータセットを使用して、提案手法の効果を評価するための長期的な試行を行いました。この実験の結果は、Photo-SLAMがレンダリング速度、フォトリアリスティックなマッピング品質、および位置推定の効率において最先端の性能を達成していることを明確に示しています。さらに、Photo-SLAMシステムの組み込みデバイスでのリアルタイム動作は、有用なロボットアプリケーションの可能性を示しています。図1と図2は、Photo-SLAMの概要を示しています。 図2: Photo-SLAMの4つの主要コンポーネントは、ハイパープリミティブな要素を持つマップを維持し、位置推定、明示的なジオメトリマッピング、暗黙的なフォトリアルマッピング、およびループクロージャコンポーネントから構成されています。 この仕事の主な成果は以下の通りです: • 研究チームは、ハイパープリミティブマップと同時ローカライゼーションに基づいた初の写真のようなマッピングシステムを開発しました。この新しいフレームワークは、屋内および屋外の単眼、ステレオ、RGB-Dカメラと一緒に動作します。 • 研究チームは、ガウシアンピラミッド学習の使用を提案しました。これにより、モデルは効果的かつ迅速に多レベルの特徴を学習でき、高精度なマッピングが可能になります。このシステムは、埋め込みシステムでもリアルタイム速度で動作し、完全なC++およびCUDAの実装により最先端のパフォーマンスを実現しています。コードへの一般公開も行われます。

「初期ランキング段階への原則的なアプローチ」

「レコメンデーションシステムでは、レコメンドの構築にはいくつかの段階があるとよく知られていますまずは候補生成、またはリトリーバルとも呼ばれるステージがあり、それに続いて1つ以上の...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us