Learn more about Search Results コミュニティ - Page 8
- You may be interested
- 北京大学の研究者は、FastServeを紹介しま...
- ベクトルデータベース:それは何か、そし...
- 第二の電気革命:AmberSemiが電気の物理を...
- 「シーケンシャルデータのディープラーニ...
- マイクロソフトがデータフォーミュレータ...
- オープンソースツールがデータサイエンス...
- 「シミュレーション仮説を証明することは...
- Google AIは、オーディオ、ビデオ、テキス...
- 「Lab Sessions 実験的なAIの新しいコラボ...
- 会社独自のChatGPTを開発するには、技術の...
- 「あなたの聴衆を知る:テクニカルプレゼ...
- Google Cloud上のサーバーレストランスフ...
- 「エンベッドチェーンの実践」
- 「生成AIで企業検索を変革する」
- PyTorch / XLA TPUsでのHugging Face
コンセプトスライダー:LoRAアダプタを使用した拡散モデルの正確な制御
彼らの能力のおかげで、テキストから画像への変換モデルは芸術コミュニティで非常に人気がありますただし、現在のモデル、最先端のフレームワークを含めて、生成された画像の視覚的な概念や属性をコントロールするのは難しく、満足のいく結果を得ることができませんほとんどのモデルはテキストのプロンプトにのみ依存しており、継続的な属性の制御に課題があります[…]
ハイプに乗ろう! ベイエリアでのAIイベント
サンフランシスコは、世界の人工知能(AI)の首都として誇り高く立っていますAIの領域に没頭するなら、今がこの都市にいるべき最適な時ですこの現象の重要な部分は、AIに焦点を当てたイベントの急増によりもたらされています過去数年間は、ベイエリアのイベント主催者にとって挑戦が続いてきました
2024年にフォローすべきトップ10のデータサイエンスYouTubeチャンネル
イントロダクション データサイエンスは、プログラミング、統計学、ドメインの専門知識を組み合わせてデータから洞察力と知識を引き出す急速に成長している分野です。オンラインコース、教科書、ブログなど、データサイエンスを学ぶための多くのリソースが利用可能です。この記事では、無料のデータサイエンス学習を提供するYouTubeチャンネルに焦点を当てます。これらのデータサイエンスYouTubeチャンネルは、キャリアのスタートや既存の知識の補完に最適な方法です。 コンテンツの品質、人気、カバーされるトピックの幅に基づいて、トップ10のYouTubeチャンネルを選びました。これらのチャンネルは、データサイエンスの概念やツールに関する講義、チュートリアル、デモを提供しています。 さあ、無料のデータサイエンス学習のためのトップ10のYouTubeチャンネルのリストを見ていきましょう! 3Blue1Brown @3blue1brown | 5.62Mの購読者 | 150本の動画 複雑な数学の問題が理解できないとお困りですか?3Blue1Brownがおすすめです!Grant Sandersonによって作成されたこのYouTubeチャンネルは、難解な概念を理解しやすく、エンターテイニングな方法で説明するためにアニメーションを使用しています。 5.6百万人以上の購読者と3.75億回の視聴数を誇る3Blue1Brownは、数学を学びたい人やディープラーニングのアルゴリズムの仕組みを理解したい人にとっての頼りになるリソースとなっています。 3Blue1Brownは、乾燥した講義や混乱する方程式ではなく、アニメーションを使って数学を生き生きとさせます。Grantの魅力的なビデオは、線型代数や微積分などの複雑なトピックを明確で追いやすい方法で説明します。彼はまた、物理学やコンピュータ科学の他の分野にも深入りし、3Blue1Brownはこれらの分野に興味がある人にとっても幅広いリソースとなっています。 数学の宿題に苦しむ学生や、あなたの周りの世界についてもっと学びたい人にとって、3Blue1Brownは素晴らしい始まりの場所です。チャンネルにアクセスして、Grantの素晴らしいビデオをチェックしてみませんか?数学を学ぶことがどれだけ楽しいかに驚くかもしれません! このデータサイエンスのYouTubeチャンネルを見るには、ここをクリックしてください。 Joma Tech @jomakaze | 2.27Mの購読者 | 98本の動画 データサイエンスのプロフェッショナルで、キャリアパスのナビゲーションや業界のトレンドに洞察を求めていますか?Joma…
「2024年のデータサイエンティストにとってのトップ26のデータサイエンスツール」
イントロダクション データサイエンスの分野は急速に進化しており、最新かつ最もパワフルなツールを活用することで、常に最先端に立つことが求められます。2024年には、プログラミング、ビッグデータ、AI、可視化など、データサイエンティストの業務のさまざまな側面に対応した選択肢が豊富に存在します。この記事では、2024年のデータサイエンスの領域を形作っているトップ26のデータサイエンスツールについて探っていきます。 データサイエンティストのためのトップ26のツール プログラミング言語によるツール 1. Python Pythonは、そのシンプルさ、多様性、豊富なライブラリエコシステムのため、データサイエンティストにとって必須の言語です。 主な特徴: 豊富なライブラリサポート(NumPy、Pandas、Scikit-learn)。 広範なコミュニティと強力な開発者サポート。 2. R Rは統計プログラミング言語であり、データ分析と可視化に使用され、頑健な統計パッケージで知られています。 主な特徴: 包括的な統計ライブラリ。 優れたデータ可視化機能。 3. Jupyter Notebook Jupyter Notebookは対話型のコンピューティング環境であり、データサイエンティストがライブコード、数式、可視化、ナラティブテキストを含むドキュメントを作成し共有することができます。 主な特徴: 複数の言語(Python、R、Julia)のサポート。 インタラクティブで使いやすい。…
「LLMアプリを作成するための5つのツール」
「経験豊富なMLエンジニアであろうと、新しいLLMデベロッパーであろうと、これらのツールはあなたの生産性を高め、AIプロジェクトの開発と展開を加速させるのに役立ちます」
このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています
最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成することができます。テキストから画像の生成に成功することは稀であり、3Dトレーニングデータが必要なため、テキストから3Dへの移行は難しいです。拡散モデルと微分可能な3D表現の良い性質により、最近のスコア蒸留最適化(SDS)ベースの手法では、事前学習済みの大規模テキストから画像を生成するモデルから3D知識を抽出し、大量の3Dデータで完全に学習する代わりに、印象的な結果を達成しています。DreamFusionは、3Dアセットの作成に新たなアプローチを導入した模範的な研究です。 過去1年間で、2Dから3Dへの蒸留パラダイムに基づいて方法論が急速に進化してきました。複数の最適化段階を適用することで、生成品質を改善するための多くの研究が行われており、3D表現の前に拡散を最適化したり、スコア蒸留アルゴリズムをさらに精密化したり、パイプライン全体の詳細を向上させたりしています。これらの手法は細かいテクスチャを生成できますが、2Dの拡散先行は依存していないため、生成された3Dコンテンツの視点の一貫性を確保することは困難です。そのため、複数のビュー情報を事前学習済みの拡散モデルに強制的に組み込むための試みがいくつか行われています。 ベースモデルは制御ネットワークと統合され、制御されたテキストからマルチビュー画像の生成が可能になります。同様に、研究チームは制御ネットワークのみを訓練し、MVDreamの重みはすべて凍結されています。研究チームは実験的に、相対姿勢条件が条件画像に関してテキストからマルチビューの生成を制御するためにより良い結果をもたらすことを発見しました。これに対して、MVDreamが絶対座標系で記述されたカメラの姿勢で訓練されている場合でも、事前学習済みのMVDreamネットワークの記述とは異なります。さらに、視点の一貫性は、シングルイメージの作成に対応する条件付けメカニズムを持つ2D ControlNetの制御ネットワークをベースモデルとの相互作用に直接採用することで容易に達成できます。 これらの問題に対処するために、浙江大学、西湖大学、同济大学の研究チームは、制御ネットワークを基にした独自の条件付けテクニックを作成し、制御されたテキストからマルチビューの生成を提供するために十分に成功したControlNetアーキテクチャを提案しました。幅広い2DデータセットLAIONと3DデータセットObjaverseの一部を共同で使用してMVControlを訓練しました。この研究では、エッジマップを条件として使用することを調査しましたが、彼らのネットワークは深度マップ、スケッチ画像など、さまざまな種類の入力状況を活用する能力に制約はありません。訓練が終了すると、研究チームはMVControlを使用して制御されたテキストから3Dアセットの生成に3D先行を提供することができます。具体的には、MVControlネットワークと事前学習済みのStable-Diffusionモデルに基づくハイブリッド拡散先行が使用されます。細かいステップでは、ベースモデルから十分なジオメトリを得た段階でのテクスチャの最適化のみが行われます。包括的なテストにより、提案された手法が入力条件画像と書かれた説明を使用して、高精度で細かい制御が可能なマルチビュー画像と3Dコンテンツを生成できることが示されています。 まとめると、以下が彼らの主な貢献です。 ・ネットワークが訓練された後、SDS最適化を介した制御されたテキストから3Dコンテンツ合成にハイブリッド拡散の一部として使用できます。 ・独自のネットワーク設計を提案し、細かい制御が可能なテキストからマルチビュー画像の生成を実現します。 • 彼らのアプローチは、入力条件画像とテキストのプロンプトによって細かく制御されることができる高精度なマルチビュー画像と3Dアセットを生成することができます。これは、広範な実験結果によって示されています。 • SDS最適化による3Dアセットの生成に加えて、彼らのMVControlネットワークは、3Dビジョンとグラフィックのコミュニティでさまざまなアプリケーションに役立つ可能性があります。
NexusRaven-V2をご紹介します:13B LLMは、ゼロショット機能呼び出しでGPT-4を凌駕し、ナチュラルランゲージの指示を実行可能なコードに変換する能力を持っています
<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-1024×623.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-150×150.png”/><p>LLMsは、コード関連のデータセットで微調整することができ、関数呼び出しを含むコードスニペットを生成することができます。これらのモデルは、コンテキストやプロンプトによって提供された入力に基づいて、関数呼び出しを含むコードを提案または生成することができます。言語モデルは、コードに関連するクエリや指示の自然言語理解に使用することができます。開発者は質問や説明を入力し、モデルはそれらを解釈して関連する関数呼び出しやコードセグメントを提供することができます。</p><p>LLMsは、提供されたコンテキストや部分的なコードに基づいて、関数呼び出しを提案したり関連する関数を提案したりすることによって、コード補完を支援することができます。これにより、開発者はより迅速かつ正確にコードを記述することができます。LLMsは、特定のタスクや問題の説明に基づいて、適切なAPIや手順をガイドすることで、開発者がコード内で呼び出すべき適切な関数を見つけるのを支援することができます。LLMsを開発環境に統合することで、開発者に対して関数呼び出し、パラメータのタイプ、または潜在的なエラーに対してリアルタイムのサポートを提供することができます。</p><p>Nexusflowの研究者は、オープンソースのLLMモデル、<strong><a href=”https://www.voagi.com/nexusravenv2-outperforms-gpt4-in-nexusflows-latest-battle.html”>NexusRaven-V2</a></strong>を提案しています。これは自然言語の指示を実行可能なコードに変換してツールを使用することができます。OpenAIアシスタントAPIは、コパイロットとエージェントがソフトウェアツールを使用するための鍵として機能します。NexusRaven-V2は、コパイロットとエージェントのオープンソースモデルを進化させることを目指しています。</p><p>NexusRaven-V2は、ネストや複合関数を使用する人間が生成したユースケースで、関数呼び出しの成功率でGPT-4を最大7%上回っています。NexusRavenはMetaのCodeLlama-13 Bインストラクションにチューニングされた指示です。Nexusflowのパイプラインを使用して、プロプライエタリなLLMを使用せずにオープンコードのコーポラから情報源を提供しています。コミュニティ開発者と企業の両方に対して商業許容です。</p><p>当社の人間によるベンチマークで、NexusRaven-V2は、関数呼び出しの成功率において、最新のGPT-4モデルよりも平均で4%高い成功率を示すことが観察されました。なお、ネストや複合関数呼び出しを必要とする4つの厳しいタスクでは、NexusRaven-V2の方がGPT-4よりも堅牢性が高いと言えます。また、開発者の関数の説明におけるバリエーションを処理する際にも、NexusRaven-V2はGPT-4よりも優れた性能を発揮します。</p><p>チームは、ユーザーがメインストリームのプロプライエタリな関数呼び出しAPIをシームレスにNexusRaven-V2で置き換えることができるオープンソースのユーティリティアーティファクトをリリースしました。また、オンラインデモやコラボノートブックを提供してオンボーディングと統合デモを行っています。彼らは評価ベンチマーク<a href=”https://www.voagi.com/call-all-functions.html”>Nexus-Function-Calling</a>をオープンソース化し、Huggingfaceの<a href=”https://www.voagi.com/create-and-analyze-advanced-machine-learning-models-using-the-sagemaker-canvas-model-leaderboard.html”>リーダーボード</a>を確立しています。このリーダーボードには、さまざまな関数呼び出しのユースケースと難易度をカバーした、実生活で人間が選定した関数呼び出しの例が多数収録されています。</p><p>将来的には、関数呼び出しのLLMは教育現場において、学習者がリアルタイムのサポートを受けながら関数の呼び出し方を正しく学び、プログラミングの概念の理解を促進することができるでしょう。</p>
Windows 12はAIの魔法機能を搭載:テクノロジーの未来への一端
Microsoft(マイクロソフト)は、次世代のWindows OSの大規模なアップデート「ハドソンバレー」と呼ばれるものを熱心に開発しており、Windowsユーザーエクスペリエンスを革新することを期待されています。 “Windows 12″という名前を付けるかどうかについての噂と洞察が既に現れており、その予想される機能、AIの進歩、およびリリースの時期について明らかにしています。 名前のジレンマ 予想が高まる中、名前に対する不確定性が存在します。最初は「Windows 12」と噂されていましたが、最新の情報ではMicrosoftは「Windows 11」というブランド名を使用する可能性があります。この戦略的な決定は、前Windowsリーダーのパノス・パナイの退任後に新しいWindowsリーダーシップから唱えられたユーザーベースのさらなる分断を避けたいという願望に基づいています。 リリースの時期の洞察 インサイダーによると、次期大規模なWindows OSのアップデートは2024年の後半に予定されています。早期のコードとプラットフォームのテストは既にWindows Insider Canary Channelで行われており、愛好家たちに早めの一見を提供しています。リリースは2024年4月にRTMのマイルストーンに到達する予定です。Windows 11のユーザーは、最終バージョンが2024年9月または10月に利用可能になることを期待することができます。 プラットフォームの移行: ニッケルからゲルマニウムへ 過去とは異なり、ハドソンバレーはニッケルプラットフォームのリリースからの転換点となります。新しいWindowsプラットフォームであるゲルマニウムに移行しています。この移行により、より大きな変革が約束されるフルOSのアップグレードが必要になります。これは以前のWindows 11のアップデートで見られた段階的な変更とは対照的です。 システム要件のジレンマ ハドソンバレーの具体的なシステム要件は明らかにされていませんが、除外される可能性についての懸念があります。特にWindows 11の要件の高さにより、大勢のPCが対象外となりました。8GBに移行する可能性がある増加したRAM要件に関する噂が出回っており、公式の確認を待っています。 AI中心の展開 MicrosoftのAI体験への取り組みは、ハドソンバレーの焦点です。今回のリリースでは、Windows…
「エキスパートのミックスについて解説」
ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…
「Pythonドキュメントの向上:ソースコードのリンク設定のステップバイステップガイド」
「Sphinxを使用してGitHubのソースコードにPythonのドキュメントをリンクさせる方法を学びましょうクリアでインタラクティブなドキュメンテーションを求める開発者のための実践的なガイドです」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.