Learn more about Search Results [6] - Page 8
- You may be interested
- AIの台頭が犬食い犬のテック産業を牽引し...
- ウィスコンシン大学マディソン校の研究者...
- ギットハブアクションズでのキャッシュ保存
- インドでのGoogle検索は今やAIによって動...
- スタンフォード大学とUTオースティンの研...
- メタのラマ2:商業利用のためのオープンソ...
- 「機械学習モデルを展開する」とはどうい...
- 「誰もがLLMプロンプトインジェクションか...
- 「ビデオセグメンテーションはよりコスト...
- 「データサイエンスの熱狂者にとっての必...
- 「人道的な災害状況報告チャットボットの...
- 「Amazon SageMaker Data WranglerでAWS L...
- 車両ルーティング問題 正確な解法とヒュー...
- 「MLOpsの考え方:常に本番準備完了」
- 「実践におけるバージョン管理:データ、M...
Benfordの法則が機械学習と出会って、偽のTwitterフォロワーを検出する
ソーシャルメディアの広大なデジタル領域において、ユーザーの真正性は最も重要な懸念事項ですTwitterなどのプラットフォームが成長するにつれ、フェイクアカウントの増加も増えていますこれらのアカウントは本物のアカウントを模倣します
ドレスコードの解読👗 自動ファッションアイテム検出のためのディープラーニング
電子商取引の活気ある世界では、ファッション業界は独自のランウェイですしかし、もし我々がこのランウェイのドレスコードを、デザイナーの目ではなく、ディープラーニングの精度で解読できるとしたら...
好奇心だけで十分なのか? 好奇心による探索からの新たな振る舞いの有用性について
私たちは、単に好奇心を使って環境を探索したり特定のタスクのボーナス報酬として使用するだけでは、この技術の全ポテンシャルを引き出すことはできず、有用なスキルを見逃してしまいます代わりに、私たちは好奇心に基づく学習中に現れる行動を保持することに焦点を当てることを提案しますこれらの自己発見された行動は、関連するタスクを解決するためのエージェントのレパートリーとして有用なスキルを持っていると考えています
T5 テキストからテキストへのトランスフォーマー(パート2)
BERT [5] の提案により、自然言語処理(NLP)のための転移学習手法の普及がもたらされましたインターネット上での未ラベル化されたテキストの広範な利用可能性により、私たちは...
NODE:表形式に特化したニューラルツリー
近年、機械学習は人気が爆発し、ニューラルディープラーニングモデルは画像やテキストなどの複雑なタスクにおいて、XGBoost [4] のような浅いモデルを圧倒しました…
大規模な言語モデルにおけるコンテキストに基づく学習アプローチ
言語モデリング(LM)は、単語のシーケンスの生成的な尤度をモデル化することを目指し、将来の(または欠損している)トークンの確率を予測します言語モデルは自然言語処理の世界を革新しました...
SparkとTableau Desktopを使用して洞察に富んだダッシュボードを作成する
データの視覚的表現として、データの可視化はデータ分析において広く採用されている手法であり、有益なビジネスの洞察(トレンド、パターン、外れ値、相関関係など)を得るための手段です
グリーンAI:AIの持続可能性を向上させるための方法とソリューション
もし、あなたがこの記事を開いたのであれば、おそらく現在の大規模言語モデル(LLM)の安全性と信頼性に関する現在の論争について聞いたことがあるでしょう有名な人々によって署名された公開書簡...
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
PyTorchを使った転移学習の実践ガイド
この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.