Learn more about Search Results Transformer - Page 87
- You may be interested
- 「CassIO OpenAIに触発されたジェネラティ...
- 「チャットボットを使って自動運転車の会...
- 「エンジニアリングは永遠に変わりました」
- 「ティーンエイジャーの薬の追跡デバイス...
- Meta AIがAnyMALを紹介:テキスト、画像、...
- Apple SiliconでのCore MLを使用した安定...
- 見えない現実の暴露:アルバータ州におけ...
- Hugging Face TransformersとHabana Gaudi...
- 「xAI:イーロン・マスクの新しいAIベンチ...
- 「Falcon 180Bをご紹介します:1800億のパ...
- 「LLMとNLPのための非構造化データの監視」
- 「分析ストリーム処理への控えめな紹介」
- 「より良い機械学習システムの構築 –...
- 「Ami Hever、UVeyeの共同創設者兼CEO ...
- スタンフォードの研究者が提案する「EVAPO...
大規模なネアデデュープリケーション:BigCodeの背後に
対象読者 大規模な文書レベルの近似除去に興味があり、ハッシュ、グラフ、テキスト処理のいくつかの理解を持つ人々。 動機 モデルにデータを供給する前にデータをきちんと扱うことは重要です。古い格言にあるように、ゴミを入れればゴミが出てきます。データ品質があまり重要ではないという幻想を作り出す見出しをつかんでいるモデル(またはAPIと言うべきか)が増えるにつれて、それがますます難しくなっています。 BigScienceとBigCodeの両方で直面する問題の1つは、ベンチマークの汚染を含む重複です。多くの重複がある場合、モデルはトレーニングデータをそのまま出力する傾向があることが示されています[1](ただし、他のドメインではそれほど明確ではありません[2])。また、重複はモデルをプライバシー攻撃に対しても脆弱にする要因となります[1]。さらに、重複除去の典型的な利点には以下があります: 効率的なトレーニング:トレーニングステップを少なくして、同じかそれ以上のパフォーマンスを達成できます[3][4]。 データ漏洩とベンチマークの汚染を防ぐ:ゼロでない重複は評価を信用できなくし、改善という主張が偽りになる可能性があります。 アクセシビリティ:私たちのほとんどは、何千ギガバイトものテキストを繰り返しダウンロードまたは転送する余裕がありません。固定サイズのデータセットに対して、重複除去は研究、転送、共同作業を容易にします。 BigScienceからBigCodeへ 近似除去のクエストに参加した経緯、結果の進展、そして途中で得た教訓について最初に共有させてください。 すべてはBigScienceがすでに数ヶ月前に始まっていたLinkedIn上の会話から始まりました。Huu Nguyenは、私のGitHubの個人プロジェクトに気付き、BigScienceのための重複除去に取り組むことに興味があるかどうか私に声をかけました。もちろん、私の答えは「はい」となりましたが、データの膨大さから単独でどれだけの努力が必要になるかは全く無知でした。 それは楽しくも挑戦的な経験でした。その大規模なデータの研究経験はほとんどなく、みんながまだ信じていたにもかかわらず、何千ドルものクラウドコンピュート予算を任せられるという意味で挑戦的でした。はい、数回マシンをオフにしたかどうかを確認するために寝床から起きなければならなかったのです。その結果、試行錯誤を通じて仕事を学びましたが、それによってBigScienceがなければ絶対に得られなかった新しい視点が開かれました。 さらに、1年後、私は学んだことをBigCodeに戻して、さらに大きなデータセットで作業をしています。英語向けにトレーニングされたLLMに加えて、重複除去がコードモデルの改善につながることも確認しました[4]。さらに、はるかに小さなデータセットを使用しています。そして今、私は学んだことを、親愛なる読者の皆さんと共有し、重複除去の視点を通じてBigCodeの裏側で何が起こっているかを感じていただければと思います。 興味がある場合、BigScienceで始めた重複除去の比較の最新バージョンをここで紹介します: これはBigCodeのために作成したコードデータセット用のものです。データセット名が利用できない場合はモデル名が使用されます。 MinHash + LSHパラメータ( P , T , K…
🐶セーフテンソルは、本当に安全であり、デフォルトの選択肢として採用されました
Hugging Faceは、EleutherAIとStability AIとの緊密な協力のもと、safetensorsライブラリの外部セキュリティ監査を依頼しました。その結果、これらの組織はすべてライブラリを保存モデルのデフォルト形式にするために進むことができます。 Trail of Bitsによって実施されたセキュリティ監査の詳細な結果は、こちらでご覧いただけます: レポート。 以下のブログ投稿では、このライブラリの起源、この監査結果の重要性、および次のステップについて説明します。 safetensorsとは何ですか? 🐶 safetensorsは、最も一般的なフレームワーク(PyTorch、TensorFlow、JAX、PaddlePaddle、NumPyなど)でテンソルを保存およびロードするためのライブラリです。 具体的な説明のために、PyTorchを使用します。 import torch from safetensors.torch import load_file, save_file weights = {"embeddings": torch.zeros((10, 100))}…
Hugging FaceとIBMは、AIビルダー向けの次世代エンタープライズスタジオであるwatsonx.aiにおいてパートナーシップを結成しました
すべてのハイプを置いておくと、AIが社会とビジネスに与える深い影響を否定するのは難しいです。スタートアップから企業まで、公共部門まで、私たちが話すすべての顧客は、大規模な言語モデルと生成的AIを実験し、最も有望なユースケースを特定し、徐々に本番環境に導入することに忙しいと言っています。 顧客から最もよくいただくコメントは、1つのモデルがすべてを支配するわけではないということです。彼らは、各ユースケースに最適なモデルを構築し、企業データに最大の関連性を持たせながら、計算予算を最適化する価値を理解しています。もちろん、プライバシーと知的財産も最優先の関心事であり、顧客は完全な制御を確保したいと考えています。 AIがすべての部門やビジネスユニットに浸透するにつれて、顧客は多くの異なるモデルのトレーニングと展開の必要性も認識しています。大規模な多国籍組織では、いつでも何百、何千ものモデルを実行することがあります。AIの革新のペースに応じて、より新しいパフォーマンスの高いモデルアーキテクチャは、顧客が予想よりも早くモデルを置き換えることになります。そのため、新しいモデルを迅速かつシームレスに本番環境にトレーニングおよび展開する必要性が強まります。 これは、標準化と自動化のみで実現できます。組織は、新規プロジェクトのためにモデル、ツール、およびインフラをゼロから構築する余裕はありません。幸いなことに、ここ数年間ではいくつかの非常にポジティブな進展がありました: モデルの標準化:Transformerアーキテクチャは、自然言語処理、コンピュータビジョン、音声、音響などのDeep Learningアプリケーションにおいて事実上の標準となりました。今では、多くのユースケースで優れたパフォーマンスを発揮するツールやワークフローを構築することが容易になりました。 事前学習済みモデル:何十万もの事前学習済みモデルがすぐに利用可能です。Hugging Face上で直接発見し、テストでき、プロジェクトに向けてすぐに有望なモデルを選定することができます。 オープンソースライブラリ:Hugging Faceのライブラリを使用すると、1行のコードで事前学習済みモデルをダウンロードし、数分でデータを試すことができます。トレーニングから展開、ハードウェアの最適化まで、顧客はコミュニティ主導の一貫したツールセットに頼ることができます。これらのツールは、彼らのノートパソコンから本番環境まで、どこでも同じように動作します。 さらに、私たちのクラウドパートナーシップにより、顧客はHugging Faceのモデルとライブラリをインフラストラクチャのプロビジョニングや技術環境の構築に心配することなく、任意のスケールで使用することができます。これにより、高品質なモデルを迅速に提供することが容易になり、車輪の再発明をする必要がありません。 AWSとのAmazon SageMaker、およびMicrosoftとのAzure Machine Learningとのコラボレーションに続いて、私たちはIBMとも協力して、彼らの新しいAIスタジオ、watsonx.aiでの作業に興奮しています。watsonx.aiは、従来のMLと新しい生成的AIの能力の両方をトレーニング、検証、チューニング、および展開するための次世代のエンタープライズスタジオです。これらの能力は、ファウンデーションモデルによって強化されます。 IBMは、watsonx.aiのコアにオープンソースを採用することを決定しました。私たちも同じ意見です!watsonx.aiは、RedHat OpenShift上に構築され、クラウドとオンプレミスの両方で利用できます。これは、厳格なコンプライアンスルールによりクラウドを使用できない顧客や、機密データをインフラストラクチャ上で扱うことにより快適な顧客にとって、素晴らしいニュースです。これまで、これらの顧客はしばしば社内で独自のMLプラットフォームを構築する必要がありました。しかし、彼らは今や、標準のDevOpsツールを使用して展開および管理されるオープンソースの代替品を手に入れることができます。 watsonx.aiの内部では、transformers(10万以上のGitHubスター!)、accelerate、peft、およびText Generation Inferenceサーバーなど、Hugging Faceのオープンソースライブラリが多数統合されています。私たちはIBMと協力し、watsonx AIおよびデータプラットフォームに取り組んでいます。これにより、Hugging Faceの顧客は、Hugging…
Hugging Faceは、Microsoftとの協力により、Azure上でHugging Faceモデルカタログを開始します
本日、Hugging FaceはMicrosoftとの協力を拡大し、Hugging Face HubからオープンソースモデルをAzure Machine Learningにもたらすことを発表しました。私たちが共同で新しいHugging Face Hubモデルカタログを作成し、Azure Machine Learning Studio内で直接利用できるようにしました。このカタログには、Hugging Face Hubからの最も人気のあるTransformersモデルが数千点含まれています。この新しい統合により、数クリックでHugging Faceモデルを管理されたエンドポイントにデプロイし、安全かつスケーラブルなAzureインフラ上で実行することができます。 この新しいエクスペリエンスは、昨年Azure Marketplaceで新しい管理アプリとしてAzure Machine Learning Endpointsを立ち上げた際に発表した戦略的パートナーシップを拡大しています。以前のマーケットプレースのソリューションは有望な初期段階でしたが、Azure Machine Learning内でのネイティブな統合を通じてのみ克服できる制約がありました。これらの課題に対処し、お客様のエクスペリエンスを向上させるために、私たちはMicrosoftと協力して、Azure Machine Learning Studio内のHugging…
bitsandbytes、4ビットの量子化、そしてQLoRAを使用して、LLMをさらに利用しやすくする
LLMは大きいことで知られており、一般のハードウェア上で実行またはトレーニングすることは、ユーザーにとって大きな課題であり、アクセシビリティも困難です。私たちのLLM.int8ブログポストでは、LLM.int8論文の技術がtransformersでどのように統合され、bitsandbytesライブラリを使用しているかを示しています。私たちは、モデルをより多くの人々にアクセス可能にするために、再びbitsandbytesと協力することを決定し、ユーザーが4ビット精度でモデルを実行できるようにしました。これには、テキスト、ビジョン、マルチモーダルなどの異なるモダリティの多くのHFモデルが含まれます。ユーザーはまた、Hugging Faceのエコシステムからのツールを活用して4ビットモデルの上にアダプタをトレーニングすることもできます。これは、DettmersらによるQLoRA論文で今日紹介された新しい手法です。論文の概要は以下の通りです: QLoRAは、1つの48GBのGPUで65Bパラメータモデルをフィントゥーニングするためのメモリ使用量を十分に削減しながら、完全な16ビットのフィントゥーニングタスクのパフォーマンスを維持する効率的なフィントゥーニングアプローチです。QLoRAは、凍結された4ビット量子化された事前学習言語モデルをLow Rank Adapters(LoRA)に逆伝搬させます。私たちの最高のモデルファミリーであるGuanacoは、Vicunaベンチマークで以前に公開されたすべてのモデルを上回り、ChatGPTのパフォーマンスレベルの99.3%に達しますが、1つのGPUでのフィントゥーニングには24時間しかかかりません。QLoRAは、パフォーマンスを犠牲にすることなくメモリを節約するためのいくつかの革新を導入しています:(a)通常分布された重みに対して情報理論的に最適な新しいデータ型である4ビットNormalFloat(NF4)(b)量子化定数を量子化して平均メモリフットプリントを減らすためのダブル量子化、および(c)メモリスパイクを管理するためのページドオプティマイザ。私たちはQLoRAを使用して1,000以上のモデルをフィントゥーニングし、高品質のデータセットを使用した指示の追跡とチャットボットのパフォーマンスの詳細な分析を提供しています。これは通常のフィントゥーニングでは実行不可能である(例えば33Bおよび65Bパラメータモデル)モデルタイプ(LLaMA、T5)とモデルスケールを横断したものです。私たちの結果は、QLoRAによる小規模な高品質データセットでのフィントゥーニングが、以前のSoTAよりも小さいモデルを使用しても最先端の結果をもたらすことを示しています。さらに、ヒューマンとGPT-4の評価に基づいてチャットボットのパフォーマンスの詳細な分析を提供し、GPT-4の評価がヒューマンの評価に対して安価で合理的な代替手段であることを示しています。さらに、現在のチャットボットのベンチマークは、チャットボットのパフォーマンスレベルを正確に評価するための信頼性がないことがわかります。レモンピックされた分析では、GuanacoがChatGPTに比べてどこで失敗するかを示しています。私たちは4ビットトレーニングのためのCUDAカーネルを含む、すべてのモデルとコードを公開しています。 リソース このブログポストとリリースには、4ビットモデルとQLoRAを始めるためのいくつかのリソースがあります: 元の論文 基本的な使用法Google Colabノートブック-このノートブックでは、4ビットモデルとその変種を使用した推論の方法、およびGoogle ColabインスタンスでGPT-neo-X(20Bパラメータモデル)を実行する方法を示しています。 フィントゥーニングGoogle Colabノートブック-このノートブックでは、Hugging Faceエコシステムを使用してダウンストリームタスクで4ビットモデルをフィントゥーニングする方法を示しています。Google ColabインスタンスでGPT-neo-X 20Bをフィントゥーニングすることが可能であることを示しています。 論文の結果を再現するための元のリポジトリ Guanaco 33b playground-または以下のプレイグラウンドセクションをチェック はじめに モデルの精度と最も一般的なデータ型(float16、float32、bfloat16、int8)について詳しく知りたくない場合は、これらの概念の詳細について視覚化を含めた簡単な言葉で説明している私たちの最初のブログポストの紹介を注意深くお読みいただくことをお勧めします。 詳細については、このwikibookドキュメントを通じて浮動小数点表現の基本を読むことをお勧めします。 最近のQLoRA論文では、4ビットFloatと4ビットNormalFloatという異なるデータ型を探求しています。ここでは、理解しやすい4ビットFloatデータ型について説明します。…
Intel CPUのNNCFと🤗 Optimumを使用した安定したディフュージョンの最適化
潜在的な拡散モデルは、テキストから画像の生成問題を解決する際にゲームチェンジャーとなります。 安定した拡散は、コミュニティや産業界で広く採用されている最も有名な例の一つです。 安定した拡散モデルのアイデアはシンプルで魅力的です:ノイズベクトルから画像を複数の小さなステップで生成し、ノイズを潜在的な画像表現に洗練させます。 ただし、このようなアプローチは、全体的な推論時間を増加させ、クライアントマシンで展開された場合にユーザーエクスペリエンスの低下を引き起こします。 通常のように、強力なGPUがここで役立つことに注意することができますが、これに伴うコストも著しく増加します。 参考までに、H1’23では、8つのvCPUと64GBのRAMを備えた強力なCPU r6i.2xlargeインスタンスの価格は1時間あたり$0.504であり、同様のNVIDIA T4を搭載したg4dn.2xlargeインスタンスの価格は1時間あたり$0.75で、これは1.5倍以上です.. これにより、画像生成サービスは所有者とユーザーにとって非常に高価になります。 クライアントアプリケーションでは、GPUがまったくない場合もあります! これにより、安定した拡散パイプラインの展開は困難な問題となります。 過去5年間、OpenVINO Toolkitは高性能推論のための多くの機能をカプセル化しました。 最初はコンピュータビジョンモデルに設計されたものですが、現在でも最先端のモデルを含む多くのコンテンポラリーモデルにおいて、最高の推論パフォーマンスを示しています。 ただし、リソース制約のあるアプリケーションに安定した拡散モデルを最適化するには、ランタイム最適化にとどまらず、さらに進んだモデル最適化機能がOpenVINO Neural Network Compression Framework(NNCF)から必要とされます。 このブログ記事では、安定した拡散モデルの最適化の問題を概説し、CPUなどのリソース制約のあるHWで実行される場合に、そのようなモデルのレイテンシを大幅に削減するワークフローを提案します。 特に、PyTorchと比較して5.1倍の推論高速化と4倍のモデルフットプリントの削減を達成しました。 安定した拡散の最適化 安定した拡散パイプラインでは、UNetモデルが計算上最もコストがかかります。そのため、単一のモデルの最適化によって推論速度が大幅に向上します。 しかし、このモデルに対しては、従来のモデル最適化手法であるポストトレーニングの8ビット量子化は機能しないことがわかりました。その理由は2つあります。まず、セマンティックセグメンテーション、スーパーレゾリューションなどのピクセルレベル予測モデルは、タスクの複雑さにより、モデル最適化の観点では最も複雑なものの一つであり、モデルパラメータと構造の微調整が結果を多数の方法で崩してしまいます。…
Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します
これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…
ファルコンはHugging Faceのエコシステムに着陸しました
イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…
ギャラリー、図書館、アーカイブ、博物館向けのHugging Face Hub
ギャラリー、図書館、アーカイブ、博物館のためのハギングフェイスハブ ハギングフェイスハブとは何ですか? Hugging Faceは、高品質な機械学習を誰にでもアクセス可能にすることを目指しています。この目標は、広く使われているTransformersライブラリなどのオープンソースのコードライブラリを開発すること、無料のコースを提供すること、そしてHugging Faceハブを提供することなど、さまざまな方法で追求されています。 Hugging Faceハブは、人々が機械学習モデル、データセット、デモを共有しアクセスできる中央リポジトリです。ハブには19万以上の機械学習モデル、3万3000以上のデータセット、10万以上の機械学習アプリケーションとデモがホストされています。これらのモデルは、事前学習済みの言語モデル、テキスト、画像、音声分類モデル、物体検出モデル、さまざまな生成モデルなど、さまざまなタスクをカバーしています。 ハブにホストされているモデル、データセット、デモは、さまざまなドメインと言語をカバーしており、ハブを通じて利用できる範囲を拡大するための定期的なコミュニティの取り組みが行われています。このブログ記事は、ギャラリー、図書館、アーカイブ、博物館(GLAM)セクターで働く人々がハギングフェイスハブをどのように利用して貢献できるかを理解することを目的としています。 記事全体を読むか、最も関連のあるセクションにジャンプすることができます! ハブが何か分からない場合は、「ハギングフェイスハブとは何ですか?」から始めてください。 ハブで機械学習モデルを見つける方法を知りたい場合は、「ハギングフェイスハブの使用方法:ハブで関連するモデルを見つける方法」から始めてください。 ハブでGLAMデータセットを共有する方法を知りたい場合は、「ウォークスルー:GLAMデータセットをハブに追加する方法」から始めてください。 いくつかの例を見たい場合は、「ハギングフェイスハブの使用例」をチェックしてください。 ハギングフェイスハブで何を見つけることができますか? モデル Hugging Faceハブは、さまざまなタスクとドメインをカバーする機械学習モデルへのアクセスを提供しています。多くの機械学習ライブラリがHugging Faceハブとの統合を持っており、これらのライブラリを介して直接モデルを使用したりハブに共有したりすることができます。 データセット Hugging Faceハブには3万以上のデータセットがあります。これらのデータセットには、テキスト、画像、音声、マルチモーダルなど、さまざまなドメインとモダリティがカバーされています。これらのデータセットは、機械学習モデルのトレーニングや評価に価値があります。 スペース Hugging Face…
はい、トランスフォーマーは時系列予測に効果的です(+オートフォーマー)
イントロダクション 数ヶ月前、AAAI 2021のベストペーパーアワードを受賞したTime Series TransformerであるInformerモデル(Zhou, Haoyiら、2021)を紹介しました。また、Informerを使用した多変量確率予測の例も提供しました。この記事では、「Transformerは時系列予測に効果的か?」(AAAI 2023)という疑問について議論します。見ていくとわかりますが、それらは効果的です。 まず、Transformerは確かに時系列予測に効果的であることを経験的に証明します。私たちの比較では、線形モデルであるDLinearが主張されるほど優れていないことが示されています。線形モデルと同じ設定の同等の大きさのモデルと比較した場合、Transformerベースのモデルは私たちが考慮するテストセットのメトリックでより優れた性能を発揮します。その後、Informerモデルの後にNeurIPS 2021で発表されたAutoformerモデル(Wu, Haixuら、2021)を紹介します。Autoformerモデルは現在🤗 Transformersで利用できます。最後に、Autoformerの分解層を使用するシンプルなフィードフォワードネットワークであるDLinearモデルについて説明します。DLinearモデルは、「Transformerは時系列予測に効果的か?」という論文で初めて紹介され、Transformerベースのモデルを時系列予測で上回ると主張されています。 さあ、始めましょう! ベンチマーキング – Transformers vs. DLinear 最近AAAI 2023で発表された「Transformerは時系列予測に効果的か?」という論文では、著者らはTransformerが時系列予測に効果的ではないと主張しています。彼らは、DLinearと呼ばれるシンプルな線形モデルとTransformerベースのモデルを比較しています。DLinearモデルはAutoformerモデルの分解層を使用しており、後ほどこの記事で紹介します。著者らは、DLinearモデルがTransformerベースのモデルを時系列予測で上回ると主張しています。本当にそうなのでしょうか?さあ、確かめましょう。 上記の表は、論文で使用された3つのデータセットにおけるAutoformerモデルとDLinearモデルの比較結果を示しています。結果からわかるように、Autoformerモデルは3つのデータセットすべてでDLinearモデルを上回っています。 次に、上記の表のTrafficデータセットを使用してAutoformerモデルとDLinearモデルを比較し、得られた結果の説明を提供します。 要約: 簡単な線形モデルは一部の場合において有利ですが、ユニバリエートの設定では変数を組み込む能力がTransformerのようなより複雑なモデルに比べてありません。 Autoformer…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.