Learn more about Search Results A - Page 846

フロントエンド開発のトレンド

最先端の進歩や最高水準のイノベーションが、現在ウェブ開発の世界を形作っている様子について、私たちと一緒に深く掘り下げてみませんか

中国の研究者グループが開発したWebGLM:汎用言語モデル(GLM)に基づくWeb強化型質問応答システム

大規模言語モデル(LLM)には、GPT-3、PaLM、OPT、BLOOM、GLM-130Bなどが含まれます。これらのモデルは、言語に関してコンピュータが理解し、生成できる可能性の限界を大きく押し上げています。最も基本的な言語アプリケーションの一つである質問応答も、最近のLLMの突破によって大幅に改善されています。既存の研究によると、LLMのクローズドブックQAおよびコンテキストに基づくQAのパフォーマンスは、教師ありモデルのものと同等であり、LLMの記憶容量に対する理解に貢献しています。しかし、LLMにも有限な容量があり、膨大な特別な知識が必要な問題に直面すると、人間の期待には及びません。したがって、最近の試みでは、検索やオンライン検索を含む外部知識を備えたLLMの構築に集中しています。 たとえば、WebGPTはオンラインブラウジング、複雑な問い合わせに対する長い回答、同等に役立つ参照を行うことができます。人気があるにもかかわらず、元のWebGPTアプローチはまだ広く採用されていません。まず、多数の専門家レベルのブラウジング軌跡の注釈、よく書かれた回答、および回答の優先順位のラベリングに依存しており、これらは高価なリソース、多くの時間、および広範なトレーニングが必要です。第二に、システムにウェブブラウザとのやり取り、操作指示(「検索」、「読む」、「引用」など)を与え、オンラインソースから関連する材料を収集させる行動クローニングアプローチ(すなわち、模倣学習)は、基本的なモデルであるGPT-3が人間の専門家に似ている必要があります。 最後に、ウェブサーフィンのマルチターン構造は、ユーザーエクスペリエンスに対して過度に遅いことがあり、WebGPT-13Bでは、500トークンのクエリに対して31秒かかります。本研究の清華大学、北京航空航天大学、Zhipu.AIの研究者たちは、10億パラメータのジェネラル言語モデル(GLM-10B)に基づく、高品質なウェブエンハンスド品質保証システムであるWebGLMを紹介します。図1は、その一例を示しています。このシステムは、効果的で、手頃な価格で、人間の嗜好に敏感であり、最も重要なことに、WebGPTと同等の品質を備えています。システムは、LLM-拡張検索器を含む、いくつかの新しいアプローチや設計を使用して、良好なパフォーマンスを実現しています。精製されたリトリーバーと粗い粒度のウェブ検索を組み合わせた2段階のリトリーバーである。 GPT-3のようなLLMの能力は、適切な参照を自発的に受け入れることです。これは、小型の密集リトリーバーを改良するために洗練される可能性があります。引用に基づく適切なフィルタリングを使用して高品質のデータを提供することで、LLMはWebGPTのように高価な人間の専門家に頼る必要がありません。オンラインQAフォーラムからのユーザーチャムアップシグナルを用いて教えられたスコアラーは、さまざまな回答に対する人間の多数派の嗜好を理解することができます。 図1は、WebGLMがオンラインリソースへのリンクを含むサンプルクエリに対する回答のスナップショットを示しています。 彼らは、適切なデータセットアーキテクチャがWebGPTの専門家ラベリングに比べて高品質のスコアラーを生成できることを示しています。彼らの定量的な欠損テストと詳細な人間評価の結果は、WebGLMシステムがどれだけ効率的かつ効果的かを示しています。特に、WebGLM(10B)は、彼らのチューリングテストでWebGPT(175B)を上回り、同じサイズのWebGPT(13B)よりも優れています。Perplexity.aiの唯一の公開可能なシステムを改善するWebGLMは、この投稿時点で最高の公開可能なウェブエンハンスドQAシステムの一つです。結論として、著者らは次のことを提供しています。・人間の嗜好に基づく、効果的なウェブエンハンスド品質保証システムであるWebGLMを構築しました。WebGPT(175B)と同等のパフォーマンスを発揮し、同じサイズのWebGPT(13B)よりもはるかに優れています。 WebGPTは、LLMsと検索エンジンによって動力を与えられた人気システムであるPerplexity.aiをも凌駕します。•彼らは、WebGLMの現実世界での展開における制限を特定しています。彼らは、ベースラインシステムよりも効率的でコスト効果の高い利点を実現しながら、高い精度を持つWebGLMを可能にするための新しい設計と戦略を提案しています。•彼らは、Web強化QAシステムを評価するための人間の評価メトリックを定式化しています。広範な人間の評価と実験により、WebGLMの強力な能力が示され、システムの将来的な開発についての洞察が生成されました。コードの実装はGitHubで利用可能です。

LLM-Blenderに会いましょう:複数のオープンソース大規模言語モデル(LLM)の多様な強みを活用して一貫して優れたパフォーマンスを達成するための新しいアンサンブルフレームワーク

大規模言語モデルは、さまざまなタスクにおいて驚異的なパフォーマンスを発揮しています。ユニークでクリエイティブなコンテンツの生成や回答の提供から、言語の翻訳や文章の要約まで、LLMは人間のまねをすることに成功しました。GPT、BERT、PaLMなどのよく知られたLLMは、正確に指示に従い、大量の高品質データにアクセスすることで、話題になっています。GPT4やPaLMのようなモデルはオープンソースではないため、アーキテクチャやトレーニングデータを理解することができない人がいるのに対して、Pythia、LLaMA、Flan-T5などのオープンソースLLMの存在により、研究者がカスタム指示データセットでモデルを微調整し、改善する機会を提供しています。これにより、Alpaca、Vicuna、OpenAssistant、MPTなどのより小型で効率的なLLMの開発が可能になります。 市場をリードするオープンソースLLMはひとつではありません。多様な例において最高のLLMは大きく異なるため、これらのLLMを動的にアンサンブルすることは、改良された回答を継続して生み出すために必要不可欠です。さまざまなLLMの独自の貢献を統合することで、バイアス、エラー、不確実性を低減し、人間の好みにより近い結果を得ることができます。この問題に対処するため、人工知能アレン研究所、南カリフォルニア大学、浙江大学の研究者らは、複数のオープンソース大規模言語モデルの多くの利点を利用して、常に優れたパフォーマンスを発揮するアンサンブルフレームワークであるLLM-BLENDERを提案しました。 LLM-BLENDERは、PAIRRANKERとGENFUSERの2つのモジュールで構成されています。これらのモジュールは、異なる例に対して最適なLLMが大きく異なることを示しています。最初のモジュールであるPAIRRANKERは、潜在的な出力の微小な変化を特定するために開発されました。これは、元のテキストと各LLMからの2つの候補出力を入力として、高度なペアワイズ比較技術を使用します。入力と候補ペアを共にエンコードするために、RoBERTaなどのクロスアテンションエンコーダを使用し、PAIRRANKERはこのエンコードを使用して2つの候補の品質を決定することができます。 2番目のモジュールであるGENFUSERは、上位ランクに入った候補を統合して改善された出力を生成することに焦点を当てています。GENFUSERは、選択されたLLMの利点を最大限に活用しつつ、欠点を最小限に抑えることを目的としています。GENFUSERは、さまざまなLLMの出力を統合することで、1つのLLMの出力よりも優れた出力を開発することを目指しています。 評価には、MixInstructというベンチマークデータセットが提供されており、Oracleペアワイズ比較を組み合わせ、さまざまな指示データセットを組み合わせています。このデータセットでは、11の人気のあるオープンソースLLMを使用して、各入力に対して複数の候補を生成し、さまざまな指示に従うタスクを実行します。自動評価のためにOracle比較が使用されており、候補出力に対するグランドトゥルースランキングが与えられているため、LLM-BLENDERや他のベンチマーク技術のパフォーマンスを評価することができます。 実験結果は、LLM-BLENDERが個別のLLMやベースライン技術よりも優れたパフォーマンスを発揮することを示しています。LLM-BLENDERのアンサンブル手法を使用することで、単一のLLMやベースライン方法を使用する場合と比較して、より高品質な出力が得られることが示されています。PAIRRANKERの選択は、参照ベースのメトリックやGPT-Rankにおいて、個別のLLMモデルを上回っています。GENFUSERは、PAIRRANKERのトップピックを利用して、効率的な融合を通じて応答品質を大幅に改善しています。 LLM-BLENDERは、Vicunaなどの個別のLLMを上回り、アンサンブル学習を通じてLLMの展開と研究を改善する可能性を示しています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us