Learn more about Search Results ス - Page 844

GPT-5から何を期待できるのか?

私たちが皆待ち望んでいた瞬間-GPT-5とその前身であるGPT-4の印象的な能力

再帰型ニューラルネットワークの基礎からの説明と視覚化

再帰型ニューラルネットワーク(RNN)は、順次操作が可能なニューラルネットワークです数年前ほど人気はありませんが、重要な発展を表しています...

言語学習モデルにおけるOpenAIの関数呼び出しの力:包括的なガイド

OpenAIの関数呼び出し機能を使用したデータパイプラインの変換:PostgreSQLとFastAPIを使用した電子メール送信ワークフローの実装

AIの創造的かつ変革的な可能性

ジェームズ・マニカ氏は、AIと創造性についてカンヌライオンズフェスティバルで講演しました彼の発言の抜粋を読んでください

SalesforceのLive Call Analyticsによる統合でエージェントの生産性を向上させる

コンタクトセンターエージェントとして、生産的な顧客との会話に集中することが好きですか?それとも、さまざまなシステムに存在する顧客情報や知識記事を調べることによって気を散らされますか?私たちは皆、そういう経験をしたことがありますマルチタスクをしながら生産的な会話をすることは難しいです1つのネガティブな経験は、[...]に傷をつける可能性があります

CVPR 2023におけるGoogle

Googleのプログラムマネージャー、Shaina Mehtaが投稿しました 今週は、バンクーバーで開催される最も重要なコンピュータビジョンとパターン認識の年次会議であるCVPR 2023の始まりを迎えます(追加のバーチャルコンテンツもあります)。Google Researchはコンピュータビジョンの研究のリーダーであり、プラチナスポンサーであり、メインカンファレンスで約90の論文が発表され、40以上のカンファレンスワークショップやチュートリアルに積極的に参加しています。 今年のCVPRに参加する場合は、是非、ブースに立ち寄って、最新のマシンパーセプションの様々な分野に応用するための技術を積極的に探求している研究者とお話ししてください。弊社の研究者は、MediaPipeを使用したオンデバイスのMLアプリケーション、差分プライバシーの戦略、ニューラル輝度場技術など、いくつかの最近の取り組みについても話し、デモを行います。 以下のリストでCVPR 2023で発表される弊社の研究についても詳しくご覧いただけます(Googleの所属は太字で表示されています)。 理事会と組織委員会 シニアエリアチェアには、Cordelia Schmid、Ming-Hsuan Yangが含まれます。 エリアチェアには、Andre Araujo、Anurag Arnab、Rodrigo Benenson、Ayan Chakrabarti、Huiwen Chang、Alireza Fathi、Vittorio Ferrari、Golnaz Ghiasi、Boqing Gong、Yedid Hoshen、Varun Jampani、Lu…

非アーベル任意子の世界で初めてのブレードング

Google Quantum AIチームの研究員であるTrond AndersenとYuri Lenskyが投稿 同じ2つのオブジェクトを見せられて、目を閉じます。目を開けると、同じ2つのオブジェクトが同じ位置にあります。それらが交換されたかどうかをどのように判断できますか?直感と量子力学の法則は同意します:オブジェクトが本当に同じ場合、判断する方法はありません。 これは常識のように聞こえますが、これは私たちが知る3次元の世界にのみ適用されます。研究者たちは、2次元(2D)平面内でのみ移動することが制限された特別な粒子である任意子と呼ばれる特別なタイプの粒子に対して、量子力学がかなり異なるものを可能にすると予測しています。任意子は互いに区別できず、一部の非アーベル任意子は、交換時に共有量子状態の観測可能な差異を引き起こす特別な性質を持っており、互いに完全に区別できないにもかかわらず、交換されたときに判断できます。研究者たちは、その親戚であるアーベル任意子を検出することに成功しましたが、交換に対する変化が微妙で直接検出することができないため、「非アーベル交換行動」を実現することは、制御と検出の両方の課題によりより困難でした。 「超伝導プロセッサーにおけるグラフ頂点の非アーベル結び目」では、この非アーベル交換行動を初めて観測しました。非アーベル任意子は、粒子を交換し、まるでストリングが絡まるように交換し合うことで量子演算が実現される新しい方法を開く可能性があります。私たちの超伝導量子プロセッサーでこの新しい交換行動を実現することは、環境ノイズに対して頑強であるという利点を持つトポロジカル量子計算の代替ルートになる可能性があります。 交換統計と非アーベル任意子 この奇妙な非アーベル的な振る舞いがどのように発生するかを理解するには、2本のストリングを結ぶことの類比が役立ちます。同じ2本のストリングを取り、互いに平行に置きます。その後、エンドを交換してダブルヘリックス形状を形成します。ストリングは同じですが、エンドを交換するときにお互いを巻き込むため、エンドが交換されたときは非常に明確になります。 非アーベル任意子の交換は、同様の方法で視覚化できます。ここでは、ストリングは、粒子の位置を時間次元に拡張して「ワールドライン」を形成することによって作成されます。2つの粒子の位置を時間に対してプロットすることを想像してください。粒子がその場にとどまる場合、プロットは単に、それらの定常位置を表す2本の平行線になります。しかし、粒子の場所を交換すると、ワールドラインがお互いに絡み合います。2回交換すると、結び目ができます。 少し視覚化するのは難しいですが、4次元(3つの空間プラス1つの時間次元)の結び目は常に簡単に解除できます。それらは自明です。シューレースのように、片方の端を引っ張って解きます。しかし、粒子が2次元空間に制限されている場合、結び目は3次元にあり、私たちの日常的な3Dの生活から知っているように、常に簡単には解除できません。非アーベル任意子のワールドラインの結び目は、粒子の状態を変換するための量子計算操作として使用できます。 非アーベル任意子の重要な側面は「退化度」です。いくつかの分離された任意子の完全な状態はローカル情報によって完全に指定されるわけではなく、同じ任意子構成はいくつかの量子状態の重ね合わせを表すことができます。非アーベル任意子を互いに巻き付けることで、エンコードされた状態が変化する可能性があります。 非アーベル任意子の作り方 Googleの量子プロセッサーの1つで非アーベル結び目を実現するにはどうすればよいでしょうか?私たちは最近、量子誤り訂正のマイルストーンを達成したサーフェスコードから始めます。量子ビットはチェッカーボードパターンの頂点に配置されます。チェッカーボードの各色の正方形は、正方形の四隅にある量子ビットの2つの可能な共同測定の1つを表します。これらの「スタビライザー測定」は、+または-1の値を返すことができます。後者はプラケット違反と呼ばれ、単一量子ビットのXおよびZゲートを適用して、斜めに作成および移動できます(チェスのビショップのように)。最近、これらのビショップのようなプラケット違反はアーベル任意子であることを示しました。非アーベル任意子とは対照的に、アーベル任意子の状態は、交換されたときにわずかに変化します。非常に微妙で、直接検出することは不可能です。アーベル任意子は興味深いですが、非アーベル任意子ほどトポロジカル量子計算にとって有望ではありません。 非アーベルアニオンを生成するには、 degeneracy(つまり、すべてのスタビライザー測定が+1になる波動関数の数)を制御する必要があります。スタビライザー測定は2つの可能な値を返すため、各スタビライザーはシステムの degeneracy を半分に減らし、十分な数のスタビライザーで、1つの波動関数だけが基準を満たすようになります。したがって、 degeneracy を増やす簡単な方法は、2つのスタビライザーを合併することです。そうすることで、スタビライザーグリッドから1つのエッジを除去し、3つのエッジが交差する2つの点が生じます。これらの点は、「degree-3 vertices」(D3Vs)と呼ばれ、非アーベルアニオンであると予測されています。 D3Vをブレードするためには、それらを動かす必要があります。つまり、スタビライザーを新しい形に伸ばしたり、圧縮したりする必要があります。これは、アニオンとその近隣の間に2キュビットゲートを実装することによって実現します(下の中央と右のパネルを参照)。 スタビライザーコード内の非アーベルアニオン。a:…

「Kingsletter」で3Dで楽しむシェルの祝賀を今週の「NVIDIA Studio」で

エディター注:この記事は、弊社の毎週のNVIDIA Studioシリーズの一部であり、注目のアーティストを紹介し、創造的なヒントとトリックを提供し、NVIDIA Studioテクノロジーが創造的なワークフローを改善する方法を示しています。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソースについて、コンテンツ作成を劇的に加速する方法についても詳しく説明しています。 キングスレターという名前の実力のある3DアーティストであるAmir Anbarestani氏は、今週NVIDIA Studioで彼のスペースタートルのシーンを作成するのを「シェル・オブ・ア・グッド・タイム」と語っています。 キングスレター氏は、常に3Dアートに魅了されていたと言います。幼少期から、没入型の環境を探求したり、作り出したりすることが好きでした。プラスチシン(プラスチックのような粘土)で遊んだり、鉛筆画を描いたりすることで、自己表現の本能は常に広大な3Dの領域で共感を見出していました。 MSIクリエイターZ17HXと共にスペースタートルを@AustraliaMSI & @NVIDIAStudioから提供 NVIDIA Studioドライバーで創造力を解き放ちましょう! こちらから入手できます:https://t.co/idJlWgb8UX pic.twitter.com/Ff6Y6RfQp4 — King’s Letter (@TheKingsletter) April 28, 2023 以下では、彼がZBrush、Adobe…

AIの仕事を見つけるための最高のプラットフォーム

あなたのキャリアの目標、好みの仕事スタイル、およびAIの専門分野に依存するAIの仕事に最適なプラットフォームについてもっと学びましょう

Rにおける二元配置分散分析

二元分散分析(Two-way ANOVA)は、二つのカテゴリカル変数が量的連続変数に与える同時効果を評価することができる統計的方法です二元分散分析は…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us