Learn more about Search Results A - Page 843
- You may be interested
- 「WavJourney:オーディオストーリーライ...
- 「Zenの共同創設者兼CTO、イオン・アレク...
- 「RAVENに会ってください:ATLASの制限に...
- ローカル vs グローバル予測 知っておくべ...
- 「Rust拡張機能でPythonコードを強化する」
- 「私たちの独占的なDockerチートシートを...
- スキレンチュートリアル: モジュール 3
- 「二塔モデルの限界を押し上げる」
- Hugging Faceハブへ、fastaiさんを歓迎します
- 『オープンソースAIゲームジャムの結果』
- 「Covid-19の感情分析」
- 適切なウェブサイト最適化でコンピュータ...
- In this article, we will explore the fa...
- パンダのコピー・オン・ライトモードの詳...
- MongoDBで結合操作を実行するためのシンプ...
あなた全体に装着可能なロボットアシスタント
メリーランド大学の研究者が開発したCalico補助ロボットは、ユーザーの衣服に装着でき、トラックに沿って走りながら様々なタスクを実行することができます
バイデン政権は、チップ研究の取り組みにGoogleの議長を起用します
ホワイトハウスは、アルファベットの議長であるジョン・ヘネシー氏と、他の4人の技術業界の専門家を選び、次世代コンピュータプロセッサの研究開発を主導するように選定しました
ワンダーダイナミックスの使い方:自分自身を3Dキャラクターに変身させる方法
ボタンをクリックするだけで、自分自身を3Dアニメーションキャラクターに変身させることができます
Rにおける二元配置分散分析
二元分散分析(Two-way ANOVA)は、二つのカテゴリカル変数が量的連続変数に与える同時効果を評価することができる統計的方法です二元分散分析は…
Google Cloudを使用してレコメンドシステムを構築する
Google CloudのRecommendation AIを使用して、高度な推薦システムを実装してください
グループ化および空間計量データの混合効果機械学習におけるGPBoost
GPBoostを用いたグループ化されたおよび地域空間計量データの混合効果機械学習 - ヨーロッパのGDPデータを用いたデモ
アテンションメカニズムを利用した時系列予測
はじめに 時系列予測は、金融、気象予測、株式市場分析、リソース計画など、さまざまな分野で重要な役割を果たしています。正確な予測は、企業が情報に基づいた決定を行い、プロセスを最適化し、競争上の優位性を得るのに役立ちます。近年、注意機構が、時系列予測モデルの性能を向上させるための強力なツールとして登場しています。本記事では、注意の概念と、時系列予測の精度を向上させるために注意を利用する方法について探求します。 この記事は、データサイエンスブログマラソンの一環として公開されました。 時系列予測の理解 注意機構について詳しく説明する前に、まず時系列予測の基礎を簡単に見直してみましょう。時系列は、日々の温度計測値、株価、月次の売上高など、時間の経過とともに収集されたデータポイントの系列から構成されます。時系列予測の目的は、過去の観測値に基づいて将来の値を予測することです。 従来の時系列予測手法、例えば自己回帰和分移動平均(ARIMA)や指数平滑法は、統計的手法や基礎となるデータに関する仮定に依存しています。研究者たちはこれらの手法を広く利用し、合理的な結果を得ていますが、データ内の複雑なパターンや依存関係を捉えることに課題を抱えることがあります。 注意機構とは何か? 人間の認知プロセスに着想を得た注意機構は、深層学習の分野で大きな注目を集めています。機械翻訳の文脈で初めて紹介された後、注意機構は自然言語処理、画像キャプション、そして最近では時系列予測など、様々な分野で広く採用されています。 注意機構の主要なアイデアは、モデルが予測を行うために最も関連性の高い入力シーケンスの特定の部分に焦点を合わせることを可能にすることです。注意は、すべての入力要素を同等に扱うのではなく、関連性に応じて異なる重みや重要度を割り当てることができるようにします。 注意の可視化 注意の仕組みをよりよく理解するために、例を可視化してみましょう。数年にわたって日々の株価を含む時系列データセットを考えます。次の日の株価を予測したいとします。注意機構を適用することで、モデルは、将来の価格に影響を与える可能性が高い、過去の価格の特定のパターンやトレンドに焦点を合わせることができます。 提供された可視化では、各時間ステップが小さな正方形として描かれ、その特定の時間ステップに割り当てられた注意重みが正方形のサイズで示されています。注意機構は、将来の価格を予測するために、関連性が高いと判断された最近の価格により高い重みを割り当てることができることがわかります。 注意に基づく時系列予測モデル 注意機構の理解ができたところで、時系列予測モデルにどのように統合できるかを探ってみましょう。人気のあるアプローチの1つは、注意を再帰型ニューラルネットワーク(RNN)と組み合わせることで、シーケンスモデリングに広く使用されている方法です。 エンコーダ・デコーダアーキテクチャ エンコーダ・デコーダアーキテクチャは、エンコーダとデコーダの2つの主要なコンポーネントから構成されています。過去の入力シーケンスをX = [X1、X2、…、XT]、Xiが時間ステップiの入力を表すようにします。 エンコーダ エンコーダは、入力シーケンスXを処理し、基礎となるパターンと依存関係を捉えます。このアーキテクチャでは、エンコーダは通常、LSTM(長短期記憶)レイヤを使用して実装されます。入力シーケンスXを取り、隠れ状態のシーケンスH = [H1、H2、…、HT]を生成します。各隠れ状態Hiは、時間ステップiの入力のエンコード表現を表します。 H、_= LSTM(X)…
dtreevizを使用して、信じられないほどの意思決定木の視覚化を作成する
決定木モデルを視覚化できることは、モデルの説明可能性にとって重要であり、ステークホルダーがこれらのモデルに信頼を持つのに役立つことがあります
超幾何分布の理解
二項分布は、データサイエンスの内外でよく知られた分布ですしかし、あなたはその人気のないいところのいとこである超幾何分布について聞いたことがありますか?もしそうでない場合、この投稿をご覧ください...
機械学習の解説:アルゴリズム、モデル、および応用の明らかにする
この技術の変革的な可能性を引き出すために、様々なアルゴリズム、モデル、実践的な応用を発見してください
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.