Learn more about Search Results ウェブサイト - Page 82

5つのAI自動化エージェンシーのアイデア(毎月45,000ドルを稼ぐための)

このAIビジネスモデルは、オンラインビジネスにおいて次の大きなトレンドと予測されています...

Pythonプロジェクトのセットアップ:パートV

経験豊富な開発者であろうと、🐍 Pythonを始めたばかりであろうと、堅牢で保守性の高いプロジェクトの構築方法を知ることは重要ですこのチュートリアルでは、...のプロセスを案内します

大規模言語モデル(LLM)とは何ですか?LLMの応用と種類

コンピュータプログラムである大規模言語モデルは、テキストの解析や作成のための新しいオプションをソフトウェアに提供します。大規模言語モデルは、ペタバイト以上のテキストデータを使用してトレーニングされることが珍しくなく、そのサイズは数テラバイトになることもあります。モデルのパラメータは、以前のトレーニングデータから学習されたコンポーネントであり、テキスト生成などのタスクにおけるモデルの適性を確立します。音声認識、感情分析、テキスト要約、スペルチェック、トークンの分類など、自然言語処理(NLP)の活動は、言語モデルを基盤としています。言語モデルはテキストを分析し、ほとんどの自然言語処理のタスクで次のトークンの確率を予測することができます。ユニグラム、N-グラム、指数、およびニューラルネットワークは、言語モデルの有効な形式です。 LLMの応用 以下のチャートは、大規模言語モデル(LLM)の現状を機能、製品、およびサポートソフトウェアの面でまとめたものです。 画像の出典:https://cobusgreyling.medium.com/the-large-language-model-landscape-9da7ee17710b シェルコマンドの生成 次世代ターミナルのWarpは、GPT-3を使用して自然言語を実行可能なシェル命令に変換します。GitHub Copilotのようなものですが、ターミナル向けです。 経験豊富なプログラマでも、シェルコマンドの構文を説明する必要がある場合があります。 正規表現の生成 開発者にとって正規表現の生成は時間がかかりますが、Autoregex.xyzはGPT-3を活用してこのプロセスを自動化します。 コピーライティング このタスクに最も人気のあるモデルはGPT-3ですが、BigScienceのBLOOMやEleuther AIのGPT-Jなどのオープンソースの代替品もあります。Copy ai、Copysmith、Contenda、Cohere、Jasper aiなどのスタートアップ企業は、この分野でアプリを開発しており、ブログ投稿、販売コンテンツ、デジタル広告、ウェブサイトのコピーなどの執筆を素早く容易にします。 分類 テキストを予め定義されたカテゴリに分類することは、教師あり学習の例です。クラスタリングという教師なし学習技術を用いることで、意味が似ているテキストを事前定義されたクラスなしでまとめることができます。 応答生成 応答生成は、サンプルの対話を使用して対話のフローを生成し、機械学習のアプローチを採用するアイデアです。ユーザーに提示される次の議論がモデルによって決定され、ユーザーの過去の応答と最も可能性の高い将来の会話を考慮に入れます。これを予測対話と呼びます。 テキストの生成 LLMの能力は、簡単な説明からテストを生成することで、「メタ能力」と見なされるかもしれません。ほとんどのLLMは生成の役割を果たします。フューショット学習データは、生成を大幅に向上させるだけでなく、データのキャスティングもデータの使用方法に影響を与えます。 知識応答 知識応答は、アプリケーションプログラミングインターフェース(API)のクエリや従来の知識ストアに頼ることなく、一般的なクロスドメインの問い合わせに対する応答を可能にする知識重視の自然言語処理(KI-NLP)の応用です。 知識重視の自然言語処理はウェブ検索ではなく、意味検索をサポートする知識ベースです。…

今日、開発者の70%がAIを受け入れています:現在のテックの環境での大型言語モデル、LangChain、およびベクトルデータベースの台頭について探求する

人工知能には無限の可能性があります。それは、新しいリリースや開発によって明らかになっています。OpenAIが開発した最新のチャットボットであるChatGPTのリリースにより、AIの領域はGPTのトランスフォーマーアーキテクチャのおかげで常に注目を浴びています。ディープラーニング、自然言語処理(NLP)、自然言語理解(NLU)からコンピュータビジョンまで、AIは無限のイノベーションをもたらす未来へと皆を推進しています。ほぼすべての産業がAIの潜在能力を活用し、自己革新を遂げています。特に大規模言語モデル(LLMs)、LangChain、およびベクトルデータベースの領域での優れた技術的進歩がこの素晴らしい発展の原動力です。 大規模言語モデル 大規模言語モデル(LLMs)の開発は、人工知能における大きな進歩を表しています。これらのディープラーニングベースのモデルは、自然言語を処理し理解する際に印象的な正確さと流暢さを示します。LLMsは、書籍、ジャーナル、Webページなど、さまざまなソースからの大量のテキストデータを使用してトレーニングされます。言語を学ぶ過程で、LLMsは言語の構造、パターン、および意味的な関連性を理解するのに役立ちます。 LLMsの基本的なアーキテクチャは通常、複数の層からなるディープニューラルネットワークです。このネットワークは、トレーニングデータで発見されたパターンと接続に基づいて、入力テキストを分析し予測を行います。トレーニングフェーズ中にモデルの期待される出力と意図された出力の不一致を減少させるために、モデルのパラメータは調整されます。LLMは、トレーニング中にテキストデータを消費し、文脈に応じて次の単語または単語のシリーズを予測しようとします。 LLMsの使用方法 質問への回答:LLMsは質問に回答するのが得意であり、正確で簡潔な回答を提供するために、本や論文、ウェブサイトなどの大量のテキストを検索します。 コンテンツ生成 – LLMsは、コンテンツ生成に活用されることが証明されています。彼らは、文法的に正しい一貫した記事、ブログエントリ、および他の文章を生成する能力を持っています。 テキスト要約:LLMsはテキスト要約に優れており、長いテキストを短く、より理解しやすい要約にまとめることができます。 チャットボット – LLMsは、チャットボットや対話型AIを使用したシステムの開発に頻繁に使用されます。これらのシステムは、質問を理解し適切に応答し、対話全体で文脈を保持することで、ユーザーと自然な言語で対話することができます。 言語翻訳 – LLMsは、言語の壁を乗り越えて成功したコミュニケーションを可能にするため、テキストの正確な翻訳が可能です。 LLMのトレーニングの手順 LLMのトレーニングの最初の段階は、モデルが言語のパターンや構造を発見するために使用する大規模なテキストデータセットを編集することです。 データセットが収集されたら、トレーニングのためにそれを準備するために前処理が必要です。これには、不要なエントリを削除することによるデータのクリーニングが含まれます。 LLMをトレーニングするために適切なモデルアーキテクチャを選択することは重要です。トランスフォーマベースのアーキテクチャは、GPTモデルを含む自然言語の処理と生成に非常に効率的であることが示されています。 モデルのパラメータを調整してLLMをトレーニングし、バックプロパゲーションなどのディープラーニング手法を使用してその精度を向上させます。モデルはトレーニング中に入力データを処理し、認識されたパターンに基づいて予測を行います。 初期のトレーニング後、LLMは特定のタスクやドメインでさらに微調整され、それらの領域でのパフォーマンスが向上します。 トレーニングされたLLMのパフォーマンスを評価し、モデルのパフォーマンスを評価するためのパープレキシティや精度などの複数のメトリクスを使用して、その効果を決定することが重要です。 トレーニングと評価が完了したLLMは、実際のアプリケーションのためのプロダクション環境で使用されます。…

2023年の最高のサイバーセキュリティニュースレター

サイバーセキュリティのニュースレターは、幅広いトピックをカバーし、さまざまな読者のニーズに対応していますこの分野で先を見越したいと思っている人にとって、非常に役立ちます

深層学習を用いた強力なレコメンデーションシステムの構築

顧客に適切なタイミングで適切な商品を提案することは、あらゆる業界において共通の課題です例えば、銀行業界では銀行員は常に顧客に高度に関連性のあるサービスを提案することを求めています...

ChatGPT CLI コマンドラインインターフェースをChatGPTに変換する

コマンドプロンプトでGPTモデルを使用するための簡単な方法

このAIツールは、AIが画像を「見る」方法と、なぜアストロノートをシャベルと間違える可能性があるのかを説明します

人工知能(AI)が近年大きな進歩を遂げ、驚異的な成果と突破的な成果をもたらしていることは広く認識されています。ただし、AIはすべてのタスクで同様に印象的な結果を達成できるわけではありません。例えば、AIは顔認識などの一部の視覚的なタスクで人間のパフォーマンスを上回ることができる一方で、画像処理や分類においても困惑するようなエラーを示すことがあり、それによって取り組んでいる課題の難しさが浮き彫りにされます。その結果、関連するタスクの内部の仕組みや特定の決定に至るまでのAIシステムの理解は、研究者や開発者の間で大きな関心と調査の対象となっています。人間の脳と同様に、AIシステムも画像の分析と分類のための戦略を使用していることが知られています。しかし、これらのプロセスの正確なメカニズムは依然として不明であり、ブラックボックスモデルを生み出しています。 そのため、特にニューラルネットワークを含む現代の機械学習モデルが行った決定を解釈するための説明可能性の手法への需要が高まっています。この文脈では、モデルの決定に影響を与える個々のピクセルの重要性を示すヒートマップを生成する属性付け手法が人気を集めています。しかし、最近の研究は、これらの手法の制限を明らかにし、モデルがどの領域を見つめているかを明らかにすることなく、画像の中でモデルが何を感知しているかを明らかにしない傾向があることを示しています。そのため、深層ニューラルネットワークを解明し、AIシステムが画像を処理するために使用する戦略を明らかにするために、ブラウン大学のカーニー脳科学研究所の研究者とフランスの人工知能研究所のコンピュータサイエンティストが協力して、CRAFT(Concept Recursive Activation FacTorization for Explainability)を開発しました。この革新的なツールは、AIモデルが意思決定プロセス中に焦点を当てる「何」と「どこ」を明確にすることを目指しており、人間の脳とコンピュータビジョンシステムが視覚情報を理解する方法の違いを強調しています。この研究は、カナダで開催された名門のコンピュータビジョンとパターン認識会議2023でも発表されました。 先に述べたように、属性付け手法を使用して特定の領域を使用してAIシステムがどのように決定を行うかを理解することは困難でした。ただし、重要な領域を特定するだけでなく、なぜそれらの領域が重要なのかを明確にすることは、人間にとって包括的な説明を提供するには不十分です。CRAFTは、ニューラルネットワークが学習した複雑で多次元の視覚表現を解明するために、現代の機械学習技術を活用してこの制約に対処しています。理解を深めるために、研究者らはユーザーフレンドリーなウェブサイトを開発し、個々の概念を視覚化することで、ニューラルネットワークがオブジェクトを分類するために使用する基本的な概念を簡単に探索できるようにしています。さらに、研究者らは、CRAFTの導入により、ユーザーがAIシステムが画像を構築し、特定の領域内でモデルが何を感知しているかを理解するだけでなく、これらの概念の階層的なランキングも理解できると強調しています。この画期的な進歩は、AIシステムの意思決定プロセスを解明し、分類結果の透明性を高めるための貴重なリソースを提供します。 要するに、研究者による研究の主な貢献は、3つの主要なポイントにまとめることができます。まず、チームは複数のレイヤーにわたって概念を効果的に特定し、分解するための再帰的なアプローチを考案しました。この革新的な戦略により、ニューラルネットワーク内の基本的なコンポーネントを包括的に理解することが可能になります。次に、Sobol指数を利用して概念の重要性を正確に推定する画期的な方法が導入されました。最後に、暗黙の微分を実装することにより、コンセプト属性マップの作成が革新的に変革され、概念とピクセルレベルの特徴の関連性を可視化し理解するための強力なツールが開放されました。さらに、チームはアプローチの効率と重要性を裏付ける一連の実験的評価を実施しました。その結果、CRAFTは他のすべての属性付け手法を上回ることが明らかになり、概念に基づく説明可能性手法の研究への更なる発展への礎となる優れたユーティリティを確立しました。 研究者らはまた、コンピュータが画像をどのように感知するかを理解することの重要性を強調しました。AIシステムが使用する視覚戦略に深い洞察を得ることで、研究者は視覚ベースのツールの精度とパフォーマンスを向上させる競争力を得ることができます。さらに、この理解は、攻撃者が人間にはほとんど感知できない微細なピクセルの強度を微妙に変更することでAIシステムを欺くことができる方法に対抗するために、敵対的でサイバー攻撃に対しても有益です。将来の課題に関しては、研究者はコンピュータビジョンシステムが人間の能力を超える日を楽しみにしています。癌の診断、化石の認識などの未解決の課題に取り組む可能性を持ち、これらのシステムが多くの分野を変革する約束を持っていると強く信じています。

分析から実際の応用へ:顧客生涯価値の事例

データサイエンティスト、マーケター、あるいはデータリーダーであろうと、もし「顧客生涯価値」をGoogleで検索したことがあるなら、がっかりしたことでしょう私もかつてCLVを担当していた時に同じように感じました

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us