Learn more about Search Results A - Page 822

ドメイン適応:事前に学習済みのNLPモデルの微調整

ドメイン適応のために事前学習済みNLPモデルの微調整方法を学びましょう特定の文脈でのパフォーマンスと精度を向上させますステップバイステップのガイドと実践的な例を提供します

NLPとエリシットを用いたジェンダー平等に関する研究の探索

はじめに NLP(自然言語処理)は、膨大なテキストデータを理解するのに役立ちます。大量の文書を手作業で読む代わりに、これらの技術を利用して理解を高速化し、主要なメッセージに素早くたどり着くことができます。このブログ記事では、パンダデータフレームとPythonのNLPツールを使用して、Elicitを使用してアフガニスタンのジェンダー平等に関する研究で人々が何を書いたかを把握する可能性について探求します。これらの洞察は、女性や女の子にとって最も困難な場所の1つとされている国で、ジェンダー平等を推進するために何がうまくいき、何がうまくいかなかったかを理解するのに役立つかもしれません(World Economic Forum、2023年)。 学習目標 CSVファイル内のテキストのテキスト分析の習得 Pythonでの自然言語処理の方法に関する知識の習得 効果的なデータ可視化のためのスキルの開発 アフガニスタンにおけるジェンダー平等に関する研究が時間とともにどのように進展したかについての洞察の獲得 この記事は、データサイエンスブログマラソンの一環として公開されました。 文献レビューにおけるElicitの使用 基礎となるデータを生成するために、私はAIパワードツールであるElicitを使用して文献レビューを行います(Elicit)。ツールに質問をすることで、アフガニスタンでジェンダー平等が失敗した理由に関連する論文のリストを生成するように依頼します。その後、CSV形式で結果の論文リスト(150以上のランダムな数の論文とみなします)をダウンロードします。このデータはどのように見えるのでしょうか?さあ、見てみましょう! PythonでElicitからのCSVデータを分析する まず、CSVファイルをパンダデータフレームとして読み込みます: import pandas as pd # ファイルパスとCSVファイルを特定 file_path = './elicit.csv' #…

7月号 データサイエンティストのための気候リソース

多くの人にとって、夏の訪れは以前は単純な興奮の原因でした:学校が終わる、仕事のスケジュールは少し忙しくないことが多い、ビーチでののんびりした午後や...

NODE:表形式に特化したニューラルツリー

近年、機械学習は人気が爆発し、ニューラルディープラーニングモデルは画像やテキストなどの複雑なタスクにおいて、XGBoost [4] のような浅いモデルを圧倒しました…

Gitタグ:それらは何であり、どのように使用するのか

Gitにおいて、タグはリポジトリの歴史の特定のポイントをマークする方法です通常は、バージョン、リリース、または重要なプロジェクトのアップデートなど、重要なマイルストーンやリリースにラベルを付けるために使用されます...

3つの難易度レベルでベクトルデータベースを説明する

この記事では、ベクトルデータベースについて、直感的な理解からいくつかの例を交えて、より技術的な詳細に説明しています

この人工知能の研究は、トランスフォーマーベースの大規模言語モデルが外部メモリを追加して計算的に普遍的であることを確認しています

トランスフォーマーベースのモデル(GPT-2やGPT-3など)によって達成された驚くべき結果は、研究コミュニティを大規模な言語モデル(LLM)の探求に引き寄せました。さらに、ChatGPTの最近の成功と人気は、LLMへの人々の関心を高めるだけです。文脈に即した学習と連想によるプロンプティングという2つの主要な発見は、モデルの正確性を大幅に向上させました。これらの発見は、単純な質問応答を超えています。質問が含まれる入力プロンプトを使用して、合理的な回答を出力するために使用されます。 これらのプロンプティング戦術はパフォーマンス向上に効果的でしたが、現在のトランスフォーマーベースのLLMは固定された入力文字列の長さにのみ条件付けることができ、それによって表現できる計算が制限されます。これは、有限な長さの文字列に依存する決定論的言語モデルは計算上制約されているため、計算的に制限されているとも理解できます。これに対抗するため、研究者はLLMに外部フィードバックループを追加する可能性を調査してきました。ここで、モデルの出力はいくつかの事後処理の後に入力として供給されます。ただし、この方法がモデルの計算セットを大幅に拡大するかどうかという問題はまだ解決されていません。 Google Brainとアルバータ大学の研究者は、この問題に取り組むために協力しました。彼らはLLMに外部の読み書き可能なメモリを追加し、それが任意の入力で任意のアルゴリズムをエミュレートできることを検証しました。彼らの研究は、「メモリ増強型大規模言語モデルは計算上普遍的である」という論文でまとめられており、連想型の読み書き可能なメモリが付加されたLLMが計算上普遍的である方法を示しています。 研究者たちの選んだLLMはFlan-U-PaLM 540Bでした。研究の背後にあるアイデアは、LLMと連想メモリをリンクするために単純なストアドインストラクションコンピュータを使用することです。これにより、言語モデルに転送される出力と入力プロンプトがループで相互作用することが可能になります。外部の連想メモリは辞書と見なすことができ、キーと値のペアは変数名/アドレス場所と値です。言語モデルとメモリは、各パーシングステップを実行するために正規表現マッチを使用します。 その後、システムに宇宙チューリングマシンの実行をシミュレートするように指示する「プロンプトプログラム」が開発されます。最終的に、シミュレーションの信頼性を示すためには、限られた数のプロンプト-結果のパターンを調べ、言語モデルが各有限の可能な入力文字列に対して適切な出力を生成することを確認する必要があります。この研究が言語モデルの「トレーニング」や事前学習の重みの変更を伴わないという事実は、この仕事の主な強みの1つです。代わりに、構築は特定のプロンプトでプログラム可能なタイプのストアドインストラクションコンピュータの作成にのみ依存しています。 この分野の以前の研究とは異なり、この研究は特異です。主な違いは、研究者が外部メモリの増強を使用して、固定された言語モデルと固定された事前学習の重みを使用して普遍的な計算動作を引き出す方法を示したことです。その結果、大規模な言語モデルは、現在存在する限り、無限の外部メモリにアクセスできる限り、計算上普遍的であることが示されました。

大規模言語モデル(LLM)とは何ですか?LLMの応用と種類

コンピュータプログラムである大規模言語モデルは、テキストの解析や作成のための新しいオプションをソフトウェアに提供します。大規模言語モデルは、ペタバイト以上のテキストデータを使用してトレーニングされることが珍しくなく、そのサイズは数テラバイトになることもあります。モデルのパラメータは、以前のトレーニングデータから学習されたコンポーネントであり、テキスト生成などのタスクにおけるモデルの適性を確立します。音声認識、感情分析、テキスト要約、スペルチェック、トークンの分類など、自然言語処理(NLP)の活動は、言語モデルを基盤としています。言語モデルはテキストを分析し、ほとんどの自然言語処理のタスクで次のトークンの確率を予測することができます。ユニグラム、N-グラム、指数、およびニューラルネットワークは、言語モデルの有効な形式です。 LLMの応用 以下のチャートは、大規模言語モデル(LLM)の現状を機能、製品、およびサポートソフトウェアの面でまとめたものです。 画像の出典:https://cobusgreyling.medium.com/the-large-language-model-landscape-9da7ee17710b シェルコマンドの生成 次世代ターミナルのWarpは、GPT-3を使用して自然言語を実行可能なシェル命令に変換します。GitHub Copilotのようなものですが、ターミナル向けです。 経験豊富なプログラマでも、シェルコマンドの構文を説明する必要がある場合があります。 正規表現の生成 開発者にとって正規表現の生成は時間がかかりますが、Autoregex.xyzはGPT-3を活用してこのプロセスを自動化します。 コピーライティング このタスクに最も人気のあるモデルはGPT-3ですが、BigScienceのBLOOMやEleuther AIのGPT-Jなどのオープンソースの代替品もあります。Copy ai、Copysmith、Contenda、Cohere、Jasper aiなどのスタートアップ企業は、この分野でアプリを開発しており、ブログ投稿、販売コンテンツ、デジタル広告、ウェブサイトのコピーなどの執筆を素早く容易にします。 分類 テキストを予め定義されたカテゴリに分類することは、教師あり学習の例です。クラスタリングという教師なし学習技術を用いることで、意味が似ているテキストを事前定義されたクラスなしでまとめることができます。 応答生成 応答生成は、サンプルの対話を使用して対話のフローを生成し、機械学習のアプローチを採用するアイデアです。ユーザーに提示される次の議論がモデルによって決定され、ユーザーの過去の応答と最も可能性の高い将来の会話を考慮に入れます。これを予測対話と呼びます。 テキストの生成 LLMの能力は、簡単な説明からテストを生成することで、「メタ能力」と見なされるかもしれません。ほとんどのLLMは生成の役割を果たします。フューショット学習データは、生成を大幅に向上させるだけでなく、データのキャスティングもデータの使用方法に影響を与えます。 知識応答 知識応答は、アプリケーションプログラミングインターフェース(API)のクエリや従来の知識ストアに頼ることなく、一般的なクロスドメインの問い合わせに対する応答を可能にする知識重視の自然言語処理(KI-NLP)の応用です。 知識重視の自然言語処理はウェブ検索ではなく、意味検索をサポートする知識ベースです。…

人工知能の未来を形作る:進歩と革新のための迅速なエンジニアリングの重要性

ChatGPTはリリース当日から話題になっています。革新的なチャットボットを既に100万人以上のユーザーが利用しています。ChatGPTは、異なる質問に対応し、広範なトピックに関する情報を生成するためにOpenAIによってトレーニングされた大規模な言語モデル(LLM)です。複数の言語を翻訳したり、ユーザー固有のユニークで創造的なコンテンツを生成したり、長いテキスト段落を要約したりすることができます。LLMは膨大なテキストデータでトレーニングされ、人間のような意味のあるテキストを生成します。さらに、ソフトウェアコードを生成する能力も持っています。大規模な言語モデルの主な利点の1つは、迅速に良質なテキストを便利かつ大規模に生成できることです。 プロンプトエンジニアリングとは何ですか? GPT-3に関して具体的に話すと、それは人間の思考と会話に達した最も近いモデルです。どのGPT-3アプリケーションを開発する場合も、適切なトレーニングプロンプトとそのデザイン、コンテンツが重要です。プロンプトは大規模な言語モデルに供給されるテキストです。プロンプトエンジニアリングは、モデルから満足のいく応答を得るためのプロンプトの設計に関わります。データ内のパターンやトレンドをモデルが見つけるために、適切なコンテキストの良質なトレーニングプロンプトをモデルに提供することに焦点を当てています。 プロンプトエンジニアリングは、機械に好ましい結果をもたらす可能性のある入力を指示する概念です。要するに、モデルに何を行う必要があるかを伝えることを含みます。例えば、テキストからテキストへのチャットGPTモデルに提供されたテキストの要約を作成するように頼む場合や、テキストから画像へのDALL-Eモデルに特定の画像を生成するように頼む場合などがあります。そのために、タスクはプロンプトベースのデータセットに変換され、そのデータに基づいてモデルが学習し、パターンを理解します。 プロンプトの例は何ですか? プロンプトは、単語や大きな文の連なり、またはコードブロックなど、何でもあります。それはまるで学生に任意のトピックの記事を書くように指示することのようです。DALLE-2などのモデルでは、プロンプトエンジニアリングはAIモデルに必要な応答をプロンプトとして説明することを含みます。プロンプトは、単純な文(例:「ラザニアのレシピ」)や質問(例:「アメリカ合衆国の最初の大統領は誰ですか?」)から、複雑な要求(例:「データサイエンスの面接が明日あるため、私のためにカスタマイズされた質問のリストを生成してください」)まで、プロンプトとして文脈を提供することによって異なります。 プロンプトエンジニアリングがAIの良い未来にとってなぜ重要なのか。 精度の向上:プロンプトエンジニアリングにより、AIシステムの訓練が多様で代表的なデータセットに基づいていることが確認されるため、より正確なAIシステムが実現できます。これにより、トレーニングデータではうまく機能するがテストデータでは機能しない過適合などの問題を回避できます。 偶発的な結果の回避:不適切なプロンプトで訓練されたAIシステムは、偶発的な結果をもたらす可能性があります。例えば、猫の画像を識別するのに長けたAIシステムが、すべての白黒写真を猫と分類することで、精度の低い結果をもたらすことがあります。 責任あるAIの促進:プロンプトエンジニアリングにより、AIシステムが人間の価値観や倫理的原則に沿った結論を出すことができます。AIのトレーニングに使用されるプロンプトを注意深く設計することにより、システムは偏見のないものであり、有害なものになりません。 応用 自然言語処理:NLPでは、プロンプトエンジニアリングによって、AIシステムが人間の言語を理解し、適切に応答するためのプロンプトが作成されます。例えば、プロンプトを設計して、AIシステムが皮肉、皮肉ではない表現を区別することを学ぶようにすることができます。 画像認識:プロンプトエンジニアリングは、画像認識において、AIシステムがさまざまな画像データに基づいて訓練されていることを確認するために使用できます。これにより、AIシステムのオブジェクトや人物の分類の精度と一貫性が向上します。 チャットボットにおける感情分析:プロンプトエンジニアリングは、チャットボットが感情を理解するのに役立つプロンプトを設計します。例えば、チャットボットがポジティブな応答、ネガティブな応答、中立的な応答を区別するのに役立ちます。 医療:医療診断や治療などのAIシステムは、医療データを理解し、正確な診断を行うためのプロンプトで訓練されます。 人工知能(AI)は近年、進歩を遂げ、私たちの生活、仕事、技術との対話のあり方を変えてきました。AIが社会にポジティブな影響を続けるためには、プロンプトエンジニアリングの重要性を理解する必要があります。これは、AIシステムが安全で信頼性のあるシステムを構築するために設計されたプロンプトで訓練されていることを確認することによって達成できます。

TensorFlowの学習率の変更方法

TensorFlowで学習率を変更するには、使用している最適化アルゴリズムに応じてさまざまなテクニックを利用することができます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us