Learn more about Search Results A - Page 81

「AIが非営利団体に持続的な価値を創造する方法」

人工知能(AI)は、世界中の無数の産業を変革してきましたそれは非営利団体にも新たな道を開いており、資金調達から業務管理まで、幅広い分野で驚くべき潜在力を提供していますどのような可能性があるかを示すために、ここではAIがこれらの団体と彼らが行う重要な仕事に持続的な価値を創造している方法を紹介します画像の出典:Pexels... AIが非営利団体に持続的な価値を創造する方法 続きを読む »

「メタがFacebookの衰退を収益化している程度」

メタの目標は、より多くの人々により多くのアプリを使用させ、それらの人々を可能な限りモネタイズすることです

Graph RAG LLMによるナレッジグラフのパワーを解き放つ

この記事では、Graph RAGとは何か、そしてLLMsと組み合わせてどのように知識グラフを強化し、より包括的な文脈理解を提供するかが紹介されています

美しいAIアート:Dalle-2を促して、特徴的なテックストーリーイメージを作成する

私は今年(2023年4月)初めて利用可能になったDalle-2を、私の技術記事に使用していますあらゆる場所にあるリサイクルされたUn-splashの画像よりも、私はこれらの画像の方が好きです私は...

「UCLA研究者が「Rephrase and Respond」(RaR)を導入、LLMsの人間の質問理解を向上させる新しい人工知能手法を紹介」

研究チームは、Rephrase and Respond(RaR)という方法を導入しました。これは、LLMsのパフォーマンスを向上させるために、人間の質問を再表現し拡張させることができるように設計されたものです。この手法は、異なるタスクで効果があり、翻訳された質問の利用を向上させる二段階のバリアントによって、他の方法と比較して著しいパフォーマンスの向上が確認されました。実験では、Chain-of-Thought(CoT)手法との補完性を強調した研究結果も示されました。 RaRによって、LLMsは人間が投げかける質問を再表現し拡張したり、単一のプロンプトに応答することができます。RaRは、CoTの手法と比較して費用対効果の高いトークンの使用を特徴としています。人間とLLMsの思考フレームの違いを解消することで、意味の明瞭性を向上させることを目指しています。評価タスクには、日付理解と最後の文字の連結などが含まれており、GPT-4の応答を中国の慣用句のタスクのゼロショット精度や言語モデリング、ステレオタイプ、フェアスコアなどの指標で評価しています。 この研究は、人間とLLMsの間の誤解に取り組み、認知バイアスや思考フレームがコミュニケーションに与える影響を強調しています。LLMsの応答品質を向上させるために正確なプロンプトを作成することの重要性を強調しています。RaRは、LLMsが人間が投げかける質問を再表現し拡張するための費用対効果の高いアプローチを提案しており、その理解力と正確性を向上させることを目指しています。CoTの手法と比較しても優れた結果が得られることが示されています。ベンチマークデータセットの曖昧さに対処し、LLMsのパフォーマンスを向上させ、公平な評価に貢献することを目指しています。 RaRの手法は、LLMsに単一のプロンプトに応答するように人間が投げかける質問を再表現し拡張することを可能にします。RaRの二段階バリアントでは、再表現LLMに続いて応答LLMを行うことが提案されています。このアプローチは、理論的および実証的な比較によってRaRとCoT手法の補完性を強調しています。実験結果は、さまざまなタスクにおけるさまざまなモデルのパフォーマンスを向上させるRaRの効果を示しています。 RaRはCoT手法との補完性が強調され、組み合わせたパフォーマンスがさらに向上します。トークン数を減らして優れた結果を達成するCoTに比べて費用効果があります。RaRは、高度なモデルから能力の低いモデルへの質問の転送を容易にし、曖昧さに対処します。公平なLLMの能力評価と厳密な人間作成タスクのレビューを提唱しています。RaRの教師なしでトレーニング不要な特性は、すべての質問に対する経済的利便性を高めています。 ベンチマークデータセットでの実証的評価によって効果が確認されたRaRは、CoT手法と補完的な位置づけがなされています。向上した質問品質の他のモデルへの転用可能性が強調され、RaRの費用対効果、教師なしの性質、広範な適用性が強調されています。公平なLLMの能力評価と特定の能力を対象とした人間作成タスクの厳密なレビューの重要性を強調し、この自然言語理解の進歩の重要性を強調しています。 RaRの方法に関する将来の研究では、他のプロンプト技術との組み合わせによってLLMのパフォーマンスを向上させることを探求する必要があります。RaRの拡大性と一般化性をさまざまなLLMアーキテクチャとデータセットで調査する必要があります。実世界の応用とユーザーケースでのRaRの評価は、その実用性を評価することになります。異なる再表現戦略の影響を探索し、潜在的な制約に対処し、LLMの能力の公平な評価方法を開発する、再表現された質問を生成するための自動化手法など、さらなる研究の必要性があります。他のプロンプト手法との比較のための標準化されたベンチマークは、この分野の研究を向上させることができます。

「React JSでChatGPT 2.0を構築する」

このブログでは、ChatGPT 2.0をReact JSと組み合わせて構築する方法について探求しますこの強力な組み合わせにより、チャットボットの開発が次のレベルに進化します

この人工知能論文は、大規模なマルチモーダルモデル(GLaMM)を導入していますこれは、画像と領域の両方の入力を処理する柔軟性を備えた、エンドツーエンドトレーニングされた大規模なマルチモーダルモデルで、ビジュアルグラウンディング能力を提供します

大型マルチモーダルモデル(LMM)は、生成型AIの波によって推進され、言語とビジュアルタスクの間のギャップを埋める重要な存在になりました。LLaVa、miniGPT4、Otter、InstructBLIP、LLaMA-Adapter v2、およびmPLUGOWLは、入力された写真に応じて効率的なテキストの回答を示す早期バージョンの例です。これらのモデルは洗練されていますが、その決定は視覚環境に基づかなければなりません。地域限定のコンテンツの変更、対話型の具現エージェント、深いビジュアル理解などの高度な応用では、このアンカリングが必要です。最近の研究では、この制約を克服するために、モデル内でバウンディングボックスを使用してユーザー定義のゾーンを分析する作業が始まっています。 最近の研究では、根付いたテキスト応答生成が注目されていますが、ピクセルレベルの正確な根付けを提供していません。さらに、関連するセグメンテーションの文献では、自然な写真におけるテキストの説明をアンカリングする試みが行われています。しかし、それらは単一のアイテムをアンカリングするだけであり、実際の一貫した会話を行うことはできません。これにより、書かれた情報や視覚的な材料の徹底的な理解を必要とする対話型の仕事での有用性が制限されます。本論文では、深層学習戦略(図1)を介して、詳細な領域認識、ピクセルレベルの根付け、および会話の能力を同時に提供するGrounding LMM(GLaMM)を提案します。 図1:GLaMMベースのGrounded Conversation Generation マルチモーダル対話モデルを使用すると、入力画像のピクセルレベルに根ざした自然言語の応答を生成することができます。オブジェクトの属性(白い家、赤い屋根、きれいに手入れされた芝生)やオブジェクトの関係(芝生が歩道に広がり、建物の上には空が広がる)といったさまざまなレベルの詳細が、出力の根づけに代表されています。例えば、物(建物、木)、もの(芝生、空、歩道)、およびオブジェクトの部分(屋根は建物の一部)などです。 彼らは、視覚的に根付いた対話の基準の不足に対処するために、Grounded Conversation Generation(GCG)というユニークな仕事を提供しています。GCGの目標は、自然言語の応答と交互に配置されたオブジェクトのセグメンテーションマスクを生成することです。この困難な課題では、フレーズの根付け、画像と領域レベルのキャプション付け、参照表現のセグメンテーション、ビジョン言語の相互作用など、通常は別々に処理されるさまざまなコンピュータビジョンのタスクが組み合わさっています。そのため、組み合わせモデルと提案された事前訓練データセットは、会話型のQA、領域レベルのキャプション付け、画像キャプション付け、および表現セグメンテーションなどのさまざまなダウンストリームタスクで成功裏に使用することができます。 モハメドビンザイードAI大学、オーストラリア国立大学、Aalto大学、カーネギーメロン大学、カリフォルニア大学メルセド、リンシェーピング大学、およびGoogle Researchの研究者は、この困難な課題に特化して作成された最初のモデルであるGLaMMを紹介しています。従来の取り組みとは異なり、GLaMMはテキストとビジュアルの提案と視覚的に根付いた結果を使用して、多様なユーザーエクスペリエンスを提供します。領域レベルでの詳細な理解のために、領域ごとの包括的なアノテーションを収集する煩雑な作業が必要です。彼らは、労力のかかる手作業のラベリングプロセスを削減するために、包括的なGrounding-anything Dataset(GranD)の自動ワークフローを提案しています。GranDは、特定の検証プロセスを持つコンピュータ化されたパイプラインを使用し、セグメンテーションマスクを伴う810百万の領域にアンカーされた750万の異なるアイデアを持っています。 このデータセットは、先進的なビジョンと言語モデルを利用して、マルチレベル階層的手法を使用してSAMの写真にアノテーションを付けています。GranDは、1100万枚の写真と33,000万枚の根付いたキャプション、8400万の参照用語などの特性を持つことで包括性を再定義しています。彼らは、根付いた会話や自動生成されたGCGデータセットのために、以前に手動でアノテーションされたデータセットをGPT-4を用いたインコンテキスト学習を使用して再定義しました。彼らは、大規模な自動生成データをGranDpとし、高品質なデータセットをGranDfと指定しており、フィネチューニングに適しています。GLaMMは、GranDfとGranDpを使用してプリトレーニング-フィネチューニングのフェーズでトレーニングされます。 結論として、彼らの研究は主に3つの貢献があります: • Grounding Large Multimodal Model(GLaMM)の導入: これは、オブジェクトセグメンテーションマスクとスムーズに組み合わされた自然言語の応答を提供する初めてのモデルです。現行のモデルとは異なり、GLaMMは視覚的な手がかりとテキストの両方をサポートしており、マルチモーダルなユーザーエンゲージメントが向上しています。 • 新しいタスクと評価基準:…

バーゼル大学病院が、「TotalSegmentator」を発表:体のCT画像の主要な解剖構造を自動的にセグメント化するための深層学習セグメンテーションモデル

過去数年間、実施されるCTスキャンの数と利用可能なデータ処理能力は増加してきました。ディープラーニングの進展により、画像解析アルゴリズムの能力は大幅に向上しました。データストレージ、処理速度、およびアルゴリズムの品質の改善により、放射線学的研究においてより大きなサンプルが利用されています。解剖学的構造のセグメンテーションは、これらの調査の多くにおいて重要です。放射線学的画像のセグメンテーションは、高度な生体マーカー抽出、自動病理の検出、腫瘍負荷の定量化に利用することができます。セグメンテーションは、手術や放射線治療計画などの一般的な臨床分析で既に利用されています。 個々の臓器(膵臓、脾臓、結腸、肺など)のCT画像のセグメンテーションには別々のモデルが存在し、複数の解剖学的構造からのデータの組み合わせについても研究が行われています。しかし、以前のすべてのモデルは、重要な解剖学的構造のごく一部しか含まず、通常の臨床画像を代表するものではない小規模なデータセットでトレーニングされています。多くのセグメンテーションモデルやデータセットへのアクセスの欠如は、研究者にとってその有用性を制限しています。公開されているデータセットへのアクセスには、しばしば長い書類手続きが必要であり、作業が煩雑であるか、制限されているデータプロバイダを利用する必要があります。 バーゼル大学病院放射線学と核医学クリニックの研究者は、約1204のCTデータセットを使用して、104の解剖学的エンティティのセグメンテーション方法を作成しました。彼らはCTスキャナ、取得設定、および造影剤フェーズでデータセットを取得しました。彼らのモデルであるTotalSegmentatorは、最小限のユーザー入力で体のほとんどの重要な解剖学的構造をセグメント化することができます。さらに、さまざまな臨床データセットにおける高い精度(Diceスコア0.943)と堅牢性により、このツールは他のオンラインで無料に利用できるものよりも優れています。研究チームはまた、4000以上のCT検査の巨大なデータセットを使用して、さまざまな臓器の体積と吸収に関する年齢に関連する変化を調べ、報告しました。 研究者は、自分たちのモデルを事前にトレーニングされたPythonパッケージとして利用できるようにしています。彼らは、モデルが12GB以下のRAMを使用し、GPUは不要であるため、どのような標準的なコンピュータでも実行できると強調しています。また、彼らのデータセットは特別な許可や要求なしで簡単にアクセスできます。現在の研究では、nnU-Netベースのモデルを使用しましたが、これはさまざまなタスクで信頼性のある結果を生み出すことが証明されています。これは今や医学的画像セグメンテーションのゴールドスタンダードとして、ほとんどの他の手法を上回っています。ハイパーパラメータの調整やトランスフォーマーなどの異なるモデルの調査により、標準的なnnU-Netのパフォーマンスが向上しています。 論文に記載されているように、提案されたモデルにはさまざまな可能性があります。外科手術に明らかな応用だけでなく、迅速かつ容易にアクセスできる臓器のセグメンテーションは、肝臓や腎臓などの個々の線量測定にも役立ちます。さらに、自動セグメンテーションにより、クリニシャンに通常または年齢依存のパラメータ(HU、体積など)を提供することで、研究の向上も可能です。病変検出モデルと組み合わせて、特定の体部位の腫瘍負荷を近似するためにも利用できるかもしれません。さらに、このモデルはさまざまな疾患を識別するためのモデル開発の基盤としても利用できます。 このモデルは、さまざまな文脈で使用するために4,500以上の研究者によってダウンロードされています。このような大規模なデータセットの解析が可能になったのは最近のことであり、データサイエンティストには多くの時間と労力がかかりました。この研究は、CT多創傷スキャンを受けた4000人以上の個体のデータセットを使用して、年齢12歳と多数のセグメンテーションされた臓器の体積との関連を示しました。通常の臓器サイズや年齢に依存する臓器の成長に関する共通の文献の数字は、数百人のサンプルサイズに基づいています。 研究チームは、男性患者が研究データセットで過剰に代表されていたことに触れていますが、これは男性の方が女性よりも平均して病院を訪れるためかもしれません。それにもかかわらず、チームは自分たちのモデルが放射線学の人口に関するより広範な調査の出発点となり得ると考えています。彼らは、将来の研究ではデータセットとモデルにより多くの解剖学的構造を含める予定であると述べています。さらに、潜在的な交絡要因に対する調整やさらなる相関分析を行い、より包括的な年齢に関する研究を行う予定です。

機械はジェンAIを使用してお互いに英語で対話すべきでしょうか?

「私たちの機械に英語で会話することを教えることで、アプリケーションやデータの統合に関するまだ解決策の見えていない課題を解決することができるのでしょうか?」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us