Learn more about Search Results リポジトリ - Page 81

スターコーダーでコーディングアシスタントを作成する

ソフトウェア開発者であれば、おそらくGitHub CopilotやChatGPTを使用して、プログラミングのタスクを解決したことがあるでしょう。これらのタスクには、コードを別の言語に変換したり、自然言語のクエリ(「N番目のフィボナッチ数を見つけるPythonプログラムを書いてください」といったもの)から完全な実装を生成したりするものがあります。これらの独自のシステムは、その機能には感動的ですが、一般にはいくつかの欠点があります。これらには、トレーニングに使用される公開データの透明性の欠如や、ドメインやコードベースに適応することのできなさなどがあります。 幸いにも、今はいくつかの高品質なオープンソースの代替品があります!これには、SalesForceのPython用CodeGen Mono 16B、またはReplitの20のプログラミング言語でトレーニングされた3Bパラメータモデルなどがあります。 新しいオープンソースの選択肢としては、BigCodeのStarCoderがあります。80以上のプログラミング言語、GitHubの問題、Gitのコミット、Jupyterノートブックから1兆トークンを収集した16Bパラメータモデルで、これらはすべて許可されたライセンスです。エンタープライズ向けのライセンス、8,192トークンのコンテキスト長、およびマルチクエリアテンションによる高速な大規模バッチ推論を備えたStarCoderは、現在、コードベースのアプリケーションにおいて最も優れたオープンソースの選択肢です。 このブログポストでは、StarCoderをチャット用にファインチューニングして、パーソナライズされたコーディングアシスタントを作成する方法を紹介します! StarChatと呼ばれるこのアシスタントには、次のようないくつかの技術的な詳細があります。 LLMを会話エージェントのように動作させる方法。 OpenAIのChat Markup Language(ChatMLとも呼ばれる)は、人間のユーザーとAIアシスタントの間の会話メッセージに対する構造化された形式を提供します。 🤗 TransformersとDeepSpeed ZeRO-3を使用して、多様な対話のコーパスで大きなモデルをファインチューニングする方法。 最終結果の一部を見るために、以下のデモでStarChatにいくつかのプログラミングの質問をしてみてください! デモで使用されたコード、データセット、およびモデルは、以下のリンクで見つけることができます。 コード: https://github.com/bigcode-project/starcoder データセット: https://huggingface.co/datasets/HuggingFaceH4/oasst1_en モデル: https://huggingface.co/HuggingFaceH4/starchat-alpha 始める準備ができたら、まずはファインチューニングなしで言語モデルを会話エージェントに変換する方法を見てみましょう。…

RWKVとは、トランスフォーマーの利点を持つRNNの紹介です

ChatGPTとチャットボットを活用したアプリケーションは、自然言語処理(NLP)の領域で注目を集めています。コミュニティは、アプリケーションやユースケースに強力で信頼性の高いオープンソースモデルを常に求めています。これらの強力なモデルの台頭は、Vaswaniらによって2017年に最初に紹介されたトランスフォーマーベースのモデルの民主化と広範な採用によるものです。これらのモデルは、それ以降のSoTA NLPモデルである再帰型ニューラルネットワーク(RNN)ベースのモデルを大幅に上回りました。このブログ投稿では、RNNとトランスフォーマーの両方の利点を組み合わせた新しいアーキテクチャであるRWKVの統合を紹介します。このアーキテクチャは最近、Hugging Face transformersライブラリに統合されました。 RWKVプロジェクトの概要 RWKVプロジェクトは、Bo Peng氏が立ち上げ、リードしています。Bo Peng氏は積極的にプロジェクトに貢献し、メンテナンスを行っています。コミュニティは、公式のdiscordチャンネルで組織されており、パフォーマンス(RWKV.cpp、量子化など)、スケーラビリティ(データセットの処理とスクレイピング)、および研究(チャットの微調整、マルチモーダルの微調整など)など、さまざまなトピックでプロジェクトの成果物を常に拡張しています。RWKVモデルのトレーニングに使用されるGPUは、Stability AIによって寄付されています。 公式のdiscordチャンネルに参加し、RWKVの基本的なアイデアについて詳しく学ぶことで、参加することができます。以下の2つのブログ投稿で詳細を確認できます:https://johanwind.github.io/2023/03/23/rwkv_overview.html / https://johanwind.github.io/2023/03/23/rwkv_details.html トランスフォーマーアーキテクチャとRNN RNNアーキテクチャは、データのシーケンスを処理するための最初の広く使用されているニューラルネットワークアーキテクチャの1つであり、固定サイズの入力を取る従来のアーキテクチャとは異なります。RNNは、現在の「トークン」(つまり、データストリームの現在のデータポイント)、前の「状態」を入力として受け取り、次のトークンと次の状態を予測します。新しい状態は、次のトークンの予測を計算するために使用され、以降も同様に続きます。RNNは異なる「モード」でも使用できるため、Andrej Karpathy氏のブログ投稿で示されているように、1対1(画像分類)、1対多(画像キャプション)、多対1(シーケンス分類)、多対多(シーケンス生成)など、さまざまなシナリオでRNNを適用することが可能です。 RNNは、各ステップで予測を計算するために同じ重みを使用するため、勾配消失の問題により長距離のシーケンスに対する情報の記憶に苦労します。この制限に対処するために、LSTMやGRUなどの新しいアーキテクチャが導入されましたが、トランスフォーマーアーキテクチャはこの問題を解決するためにこれまでで最も効果的なものとなりました。 トランスフォーマーアーキテクチャでは、入力トークンは自己注意モジュールで同時に処理されます。トークンは、クエリ、キー、値の重みを使用して異なる空間に線形にプロジェクションされます。結果の行列は、アテンションスコアを計算するために直接使用され、その後値の隠れ状態と乗算されて最終的な隠れ状態が得られます。この設計により、アーキテクチャは長距離のシーケンスの問題を効果的に緩和し、RNNモデルと比較して推論とトレーニングの速度も高速化します。 トランスフォーマーアーキテクチャは、トレーニング中に従来のRNNおよびCNNに比べていくつかの利点があります。最も重要な利点の1つは、文脈的な表現を学習できる能力です。RNNやCNNとは異なり、トランスフォーマーアーキテクチャは単語ごとではなく、入力シーケンス全体を処理します。これにより、シーケンス内の単語間の長距離の依存関係を捉えることができます。これは、言語翻訳や質問応答などのタスクに特に有用です。 推論中、RNNは速度とメモリ効率の面でいくつかの利点があります。これらの利点には、単純さ(行列-ベクトル演算のみが必要)とメモリ効率(推論中にメモリ要件が増えない)が含まれます。さらに、現在のトークンと状態にのみ作用するため、コンテキストウィンドウの長さに関係なく計算速度が同じままです。 RWKVアーキテクチャ RWKVは、AppleのAttention Free Transformerに触発されています。アーキテクチャは注意深く簡素化され、最適化されており、RNNに変換することができます。さらに、TokenShiftやSmallInitEmbなどのトリックが追加されています(公式のGitHubリポジトリのREADMEにトリックのリストが記載されています)。これにより、モデルのパフォーマンスがGPTに匹敵するように向上しています。現在、トレーニングを14Bパラメータまでスケーリングするためのインフラストラクチャがあり、RWKV-4(本日の最新バージョン)では数値の不安定性など、いくつかの問題が反復的に修正されました。 RNNとトランスフォーマーの組み合わせとしてのRWKV…

単一のGPUでChatgptのようなチャットボットをROCmで実行する

はじめに ChatGPTは、OpenAIの画期的な言語モデルであり、人工知能の領域で影響力のある存在となり、様々なセクターでAIアプリケーションの多様な活用を可能にしています。その驚異的な人間のようなテキストの理解力と生成力により、ChatGPTは顧客サポートから創造的な文章作成まで、さまざまな産業を変革し、貴重な研究ツールとしても使われています。 OPT、LLAMA、Alpaca、Vicunaなど、大規模な言語モデルのオープンソース化にはさまざまな取り組みが行われていますが、その中でもVicunaはAMD GPU上でROCmを使用してVicuna 13Bモデルを実行する方法を説明します。 Vicunaとは何ですか? Vicunaは、UCバークレー、CMU、スタンフォード、UCサンディエゴのチームによって開発された13兆パラメータを持つオープンソースのチャットボットです。Vicunaは、LLAMAベースモデルを使用して、ShareGPT.comからの約70,000件のユーザー共有会話を収集し、公開APIを介してファインチューニングしました。GPT-4を参照とした初期の評価では、Vicuna-13BはOpenAI ChatGPTと比較して90%以上の品質を実現しています。 それはわずか数週間前の4月11日にGithubでリリースされました。Vicunaのデータセット、トレーニングコード、評価メトリック、トレーニングコストはすべて公開されており、一般のユーザーにとって費用対効果の高いソリューションとなっています。 Vicunaの詳細については、https://vicuna.lmsys.org をご覧ください。 なぜ量子化されたGPTモデルが必要なのですか? Vicuna-13Bモデルをfp16で実行するには、約28GBのGPU RAMが必要です。メモリの使用量をさらに減らすためには、最適化技術が必要です。最近発表された研究論文「GPTQ」では、低ビット精度を持つGPTモデルの正確な事後トレーニング量子化が提案されています。以下の図に示すように、パラメータが10Bを超えるモデルの場合、4ビットまたは3ビットのGPTQはfp16と同等の精度を実現することができます。 さらに、これらのモデルの大きなパラメータは、GPTトークン生成が計算(TFLOPsまたはTOPs)そのものよりもメモリ帯域幅(GB/s)によって制約されるため、GPTのレイテンシに深刻な影響を与えます。そのため、メモリに制約のある状況下では、量子化モデルはトークン生成のレイテンシを低下させません。GPTQの量子化の論文とGitHubリポジトリを参照してください。 この技術を活用することで、Hugging Faceからいくつかの4ビット量子化されたVicunaモデルが利用可能です。 ROCmを使用してAMD GPUでVicuna 13Bモデルを実行する AMD GPUでVicuna 13Bモデルを実行するには、AMD GPUの高速化のためのオープンソースソフトウェアプラットフォームであるROCm(Radeon…

大規模なネアデデュープリケーション:BigCodeの背後に

対象読者 大規模な文書レベルの近似除去に興味があり、ハッシュ、グラフ、テキスト処理のいくつかの理解を持つ人々。 動機 モデルにデータを供給する前にデータをきちんと扱うことは重要です。古い格言にあるように、ゴミを入れればゴミが出てきます。データ品質があまり重要ではないという幻想を作り出す見出しをつかんでいるモデル(またはAPIと言うべきか)が増えるにつれて、それがますます難しくなっています。 BigScienceとBigCodeの両方で直面する問題の1つは、ベンチマークの汚染を含む重複です。多くの重複がある場合、モデルはトレーニングデータをそのまま出力する傾向があることが示されています[1](ただし、他のドメインではそれほど明確ではありません[2])。また、重複はモデルをプライバシー攻撃に対しても脆弱にする要因となります[1]。さらに、重複除去の典型的な利点には以下があります: 効率的なトレーニング:トレーニングステップを少なくして、同じかそれ以上のパフォーマンスを達成できます[3][4]。 データ漏洩とベンチマークの汚染を防ぐ:ゼロでない重複は評価を信用できなくし、改善という主張が偽りになる可能性があります。 アクセシビリティ:私たちのほとんどは、何千ギガバイトものテキストを繰り返しダウンロードまたは転送する余裕がありません。固定サイズのデータセットに対して、重複除去は研究、転送、共同作業を容易にします。 BigScienceからBigCodeへ 近似除去のクエストに参加した経緯、結果の進展、そして途中で得た教訓について最初に共有させてください。 すべてはBigScienceがすでに数ヶ月前に始まっていたLinkedIn上の会話から始まりました。Huu Nguyenは、私のGitHubの個人プロジェクトに気付き、BigScienceのための重複除去に取り組むことに興味があるかどうか私に声をかけました。もちろん、私の答えは「はい」となりましたが、データの膨大さから単独でどれだけの努力が必要になるかは全く無知でした。 それは楽しくも挑戦的な経験でした。その大規模なデータの研究経験はほとんどなく、みんながまだ信じていたにもかかわらず、何千ドルものクラウドコンピュート予算を任せられるという意味で挑戦的でした。はい、数回マシンをオフにしたかどうかを確認するために寝床から起きなければならなかったのです。その結果、試行錯誤を通じて仕事を学びましたが、それによってBigScienceがなければ絶対に得られなかった新しい視点が開かれました。 さらに、1年後、私は学んだことをBigCodeに戻して、さらに大きなデータセットで作業をしています。英語向けにトレーニングされたLLMに加えて、重複除去がコードモデルの改善につながることも確認しました[4]。さらに、はるかに小さなデータセットを使用しています。そして今、私は学んだことを、親愛なる読者の皆さんと共有し、重複除去の視点を通じてBigCodeの裏側で何が起こっているかを感じていただければと思います。 興味がある場合、BigScienceで始めた重複除去の比較の最新バージョンをここで紹介します: これはBigCodeのために作成したコードデータセット用のものです。データセット名が利用できない場合はモデル名が使用されます。 MinHash + LSHパラメータ( P , T , K…

bitsandbytes、4ビットの量子化、そしてQLoRAを使用して、LLMをさらに利用しやすくする

LLMは大きいことで知られており、一般のハードウェア上で実行またはトレーニングすることは、ユーザーにとって大きな課題であり、アクセシビリティも困難です。私たちのLLM.int8ブログポストでは、LLM.int8論文の技術がtransformersでどのように統合され、bitsandbytesライブラリを使用しているかを示しています。私たちは、モデルをより多くの人々にアクセス可能にするために、再びbitsandbytesと協力することを決定し、ユーザーが4ビット精度でモデルを実行できるようにしました。これには、テキスト、ビジョン、マルチモーダルなどの異なるモダリティの多くのHFモデルが含まれます。ユーザーはまた、Hugging Faceのエコシステムからのツールを活用して4ビットモデルの上にアダプタをトレーニングすることもできます。これは、DettmersらによるQLoRA論文で今日紹介された新しい手法です。論文の概要は以下の通りです: QLoRAは、1つの48GBのGPUで65Bパラメータモデルをフィントゥーニングするためのメモリ使用量を十分に削減しながら、完全な16ビットのフィントゥーニングタスクのパフォーマンスを維持する効率的なフィントゥーニングアプローチです。QLoRAは、凍結された4ビット量子化された事前学習言語モデルをLow Rank Adapters(LoRA)に逆伝搬させます。私たちの最高のモデルファミリーであるGuanacoは、Vicunaベンチマークで以前に公開されたすべてのモデルを上回り、ChatGPTのパフォーマンスレベルの99.3%に達しますが、1つのGPUでのフィントゥーニングには24時間しかかかりません。QLoRAは、パフォーマンスを犠牲にすることなくメモリを節約するためのいくつかの革新を導入しています:(a)通常分布された重みに対して情報理論的に最適な新しいデータ型である4ビットNormalFloat(NF4)(b)量子化定数を量子化して平均メモリフットプリントを減らすためのダブル量子化、および(c)メモリスパイクを管理するためのページドオプティマイザ。私たちはQLoRAを使用して1,000以上のモデルをフィントゥーニングし、高品質のデータセットを使用した指示の追跡とチャットボットのパフォーマンスの詳細な分析を提供しています。これは通常のフィントゥーニングでは実行不可能である(例えば33Bおよび65Bパラメータモデル)モデルタイプ(LLaMA、T5)とモデルスケールを横断したものです。私たちの結果は、QLoRAによる小規模な高品質データセットでのフィントゥーニングが、以前のSoTAよりも小さいモデルを使用しても最先端の結果をもたらすことを示しています。さらに、ヒューマンとGPT-4の評価に基づいてチャットボットのパフォーマンスの詳細な分析を提供し、GPT-4の評価がヒューマンの評価に対して安価で合理的な代替手段であることを示しています。さらに、現在のチャットボットのベンチマークは、チャットボットのパフォーマンスレベルを正確に評価するための信頼性がないことがわかります。レモンピックされた分析では、GuanacoがChatGPTに比べてどこで失敗するかを示しています。私たちは4ビットトレーニングのためのCUDAカーネルを含む、すべてのモデルとコードを公開しています。 リソース このブログポストとリリースには、4ビットモデルとQLoRAを始めるためのいくつかのリソースがあります: 元の論文 基本的な使用法Google Colabノートブック-このノートブックでは、4ビットモデルとその変種を使用した推論の方法、およびGoogle ColabインスタンスでGPT-neo-X(20Bパラメータモデル)を実行する方法を示しています。 フィントゥーニングGoogle Colabノートブック-このノートブックでは、Hugging Faceエコシステムを使用してダウンストリームタスクで4ビットモデルをフィントゥーニングする方法を示しています。Google ColabインスタンスでGPT-neo-X 20Bをフィントゥーニングすることが可能であることを示しています。 論文の結果を再現するための元のリポジトリ Guanaco 33b playground-または以下のプレイグラウンドセクションをチェック はじめに モデルの精度と最も一般的なデータ型(float16、float32、bfloat16、int8)について詳しく知りたくない場合は、これらの概念の詳細について視覚化を含めた簡単な言葉で説明している私たちの最初のブログポストの紹介を注意深くお読みいただくことをお勧めします。 詳細については、このwikibookドキュメントを通じて浮動小数点表現の基本を読むことをお勧めします。 最近のQLoRA論文では、4ビットFloatと4ビットNormalFloatという異なるデータ型を探求しています。ここでは、理解しやすい4ビットFloatデータ型について説明します。…

Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します

これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…

ファルコンはHugging Faceのエコシステムに着陸しました

イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…

ギャラリー、図書館、アーカイブ、博物館向けのHugging Face Hub

ギャラリー、図書館、アーカイブ、博物館のためのハギングフェイスハブ ハギングフェイスハブとは何ですか? Hugging Faceは、高品質な機械学習を誰にでもアクセス可能にすることを目指しています。この目標は、広く使われているTransformersライブラリなどのオープンソースのコードライブラリを開発すること、無料のコースを提供すること、そしてHugging Faceハブを提供することなど、さまざまな方法で追求されています。 Hugging Faceハブは、人々が機械学習モデル、データセット、デモを共有しアクセスできる中央リポジトリです。ハブには19万以上の機械学習モデル、3万3000以上のデータセット、10万以上の機械学習アプリケーションとデモがホストされています。これらのモデルは、事前学習済みの言語モデル、テキスト、画像、音声分類モデル、物体検出モデル、さまざまな生成モデルなど、さまざまなタスクをカバーしています。 ハブにホストされているモデル、データセット、デモは、さまざまなドメインと言語をカバーしており、ハブを通じて利用できる範囲を拡大するための定期的なコミュニティの取り組みが行われています。このブログ記事は、ギャラリー、図書館、アーカイブ、博物館(GLAM)セクターで働く人々がハギングフェイスハブをどのように利用して貢献できるかを理解することを目的としています。 記事全体を読むか、最も関連のあるセクションにジャンプすることができます! ハブが何か分からない場合は、「ハギングフェイスハブとは何ですか?」から始めてください。 ハブで機械学習モデルを見つける方法を知りたい場合は、「ハギングフェイスハブの使用方法:ハブで関連するモデルを見つける方法」から始めてください。 ハブでGLAMデータセットを共有する方法を知りたい場合は、「ウォークスルー:GLAMデータセットをハブに追加する方法」から始めてください。 いくつかの例を見たい場合は、「ハギングフェイスハブの使用例」をチェックしてください。 ハギングフェイスハブで何を見つけることができますか? モデル Hugging Faceハブは、さまざまなタスクとドメインをカバーする機械学習モデルへのアクセスを提供しています。多くの機械学習ライブラリがHugging Faceハブとの統合を持っており、これらのライブラリを介して直接モデルを使用したりハブに共有したりすることができます。 データセット Hugging Faceハブには3万以上のデータセットがあります。これらのデータセットには、テキスト、画像、音声、マルチモーダルなど、さまざまなドメインとモダリティがカバーされています。これらのデータセットは、機械学習モデルのトレーニングや評価に価値があります。 スペース Hugging Face…

私たちの新しいコンテンツガイドラインとポリシーをお知らせします

当社は、オープンで協力的かつ責任ある機械学習の推進を目指すコミュニティ主導のプラットフォームとして、私たちのコミュニティ全体に対して歓迎の場を維持しサポートすることを喜んでいます!この目標をサポートするために、私たちはコンテンツポリシーを更新しました。 完全なドキュメントに精通することをお勧めします。その間、このブログポストでは、私たちのコンテンツポリシーの更新の背景、理論の概要、および価値観について概説します。両方のリソースを参照することで、当社プラットフォームのコンテンツに対する期待と目標を包括的に理解することができます。 機械学習コンテンツのモデレーション 機械学習アーティファクトのモデレーションには新たな課題が生じます。静的なコンテンツよりも、人工知能システムやモデルの開発・展開に関連するリスクは、潜在的な損害を予測するために詳細な分析と包括的なアプローチが必要です。そのため、この新しいコンテンツポリシーの起草には、私たちの異なるメンバーや専門家からの努力が集約され、責任ある開発と展開をどのように実現するかについて明確化するために、全社的な視点と詳細な情報が必要とされています。 さらに、AIと機械学習の分野が拡大するにつれ、ユースケースとアプリケーションの多様性も増えています。これにより、最新の研究、倫理的考慮事項、ベストプラクティスについて常に最新情報にアップデートする必要があります。そのため、ユーザーの協力を促進することも、当社プラットフォームの持続可能性にとって重要です。具体的には、コミュニティタブなどのコミュニティ機能を通じて、リポジトリの著者、ユーザー、組織、および私たちのチームの間での協力的なソリューションを奨励・促進しています。 同意を基本とする価値観 機械学習システムの開発と使用において、人々の権利を尊重することを優先するため、技術と法律の進展に対応する前向きな視点を持ちます。機械学習によって可能になる情報処理の新たな方法は、AIの分野や規制の範囲で、人々の作業、イメージ、プライバシーに関する権利について全く新しい問題を提起しています。これらの議論の中心にあるのは、人々の権利をどのように具体化すべきかという点です。私たちはここで一つのアプローチを提供しています。 この変化し続ける法的状況の中で、害を引き起こすことを避けるために「同意」の本質的な価値を強調することがますます重要になっています。それにより、個人の主体性と主観的な経験に焦点を当てることができます。このアプローチは、同意に対する先見性とより共感的な理解をサポートするだけでなく、文化的および文脈的要素に対処するための積極的な措置を奨励します。特に、私たちのコンテンツポリシーは、ユーザーが見るコンテンツ、人々のアイデンティティと表現に関連する同意に対処することを目指しています。 このプラットフォームでの人々の同意と経験に対する配慮は、コミュニティコンテンツやユーザーの行動にも及びます。安全で歓迎する環境を維持するために、ユーザーやHugging Faceスタッフに対して攻撃的または嫌がらせの言葉を許容しません。ユーザーとリポジトリの著者の間の潜在的な紛争に対しては、必要な場合にのみ介入し、協力的な解決策の促進に重点を置いています。透明性を促進するために、私たちはコミュニティタブ内での公開討論を奨励しています。 私たちのアプローチは、私たちのユーザーの貴重な意見によって可能になり、改善を常に追求することを約束しています。ご質問やご心配事がある場合は、[email protected]までお問い合わせください。 オープンなAIとMLの協力を奨励する、友好的で支援的なコミュニティを築くために力を合わせましょう!皆さんとともに、誰もが歓迎される環境で大きな進歩を遂げることができます。

iPhone、iPad、およびMacでのCore MLによる高速で安定した拡散

先週、WWDC’23(Apple Worldwide Developers Conference)が開催されました。キーノート中のVision Proの発表に焦点が当てられましたが、それだけではありません。毎年のように、WWDC週はAppleのオペレーティングシステムとフレームワークの新機能について深く掘り下げる200以上の技術セッションが詰まっています。今年は特に、圧縮と最適化のためのCore MLの変更に興奮しています。これらの変更により、Stable Diffusionなどのモデルの実行が高速化され、メモリ使用量も少なくなります!一例として、12月にiPhone 13で実行したテストと現在の6ビットパレット化を使用した速度の比較を考えてみましょう: 12月のiPhoneでのStable Diffusionと現在の6ビットパレット化 目次 新しいCore MLの最適化 量子化および最適化されたStable Diffusionモデルの使用 カスタムモデルの変換と最適化 6ビット未満の使用 結論 新しいCore MLの最適化 Core MLは、Appleのデバイス内で効率的に機械学習モデルを実行するための成熟したフレームワークであり、CPU、GPU、およびMLタスクに特化したニューラルエンジンなど、Appleデバイスのすべてのコンピューティングハードウェアを活用します。デバイス上での実行は、Stable Diffusionや大規模な言語モデルの人気によって引き起こされた非常に興味深い時期を迎えています。多くの人々がこれらのモデルをさまざまな理由でハードウェア上で実行したいと考えており、利便性やプライバシー、APIのコスト削減などがその理由です。自然に、多くの開発者がデバイス上でこれらのモデルを効率的に実行する方法を探求し、新しいアプリやユースケースを作成しています。この目標を達成するためのCore MLの改善は、コミュニティにとって大きなニュースです!…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us