Learn more about Search Results ResNet - Page 7
- You may be interested
- メタの戦略的な優れた点:Llama 2は彼らの...
- 「ベクトルデータベースの力を活用する:...
- 「データを実行可能なビジネスインサイト...
- 私はスポティファイで3回の大量解雇を乗り...
- 「量子もつれ測定の革命:限られたデータ...
- データ分析の求人トレンド:求人トレンド...
- 「You.comがYouRetrieverをリリース:You....
- データサイエンスへのゲートの解除:GATE ...
- EAGLEをご紹介します:圧縮に基づく高速LL...
- スターバックスのコーヒー代で、自分自身...
- 「機械学習支援コンピュータアーキテクチ...
- このAI論文では、ディープラーニングを通...
- 「Python標準ライブラリのNaN値」
- 「ベクトル類似検索が消費者支出に与える...
- 初心者のための畳込みニューラルネットワーク
SEER:セルフスーパーバイズドコンピュータビジョンモデルの突破口?
過去10年間、人工知能(AI)と機械学習(ML)は著しい進歩を遂げてきました現在では、これまで以上に正確で効率的で、かつ能力が高まっています最新のAIとMLモデルは、画像やビデオファイル内のオブジェクトをシームレスに正確に認識することができますさらに、人間の知性に匹敵するテキストや音声を生成することも可能です[…]
「フューショットラーニングの力を解き放つ」
はじめに 少数のラベル付きの例だけでタスクを征服し、データのオッズに挑む機械の領域へようこそ。このガイドでは、少数のラベル付き例で偉業を達成するための賢いアルゴリズムがどのように偉大さを実現するかについて探求します。人工知能の新たな可能性を開く少数のデータでのアプローチの概念や、従来の機械学習との違い、データが少ないシナリオでのこのアプローチの重要性について学びましょう。 学習目標 技術的な詳細に入る前に、このガイドの学習目標を概説しましょう: 概念を理解し、従来の機械学習との違い、データが少ないシナリオでのアプローチの重要性を理解する 少数のデータ学習に使用されるさまざまな手法やアルゴリズム、メトリックベースの手法、モデルベースのアプローチ、およびその基本原理を探索する さまざまなシナリオでの少数のデータ学習の技術の適用方法を理解する。効果的なトレーニングと評価のためのベストプラクティスを理解する 少数のデータ学習の現実世界の応用を発見する 少数のデータ学習の利点と制限を理解する さあ、ガイドの各セクションについて探求して、これらの目標を達成する方法を理解しましょう。 この記事はデータサイエンスブログマラソンの一部として公開されました。 Few Shot Learningとは何ですか? Few Shot Learningは、クラスまたはタスクごとに限られた数のラベル付き例からモデルを訓練して認識と一般化を行う機械学習のサブフィールドです。Few Shot Learningは、データに飢えたモデルの従来の概念に挑戦します。大量のデータセットに頼る代わりに、Few Shot Learningはわずかなラベル付きサンプルから学習することを可能にします。限られたデータから一般化する能力は、広範なラベル付きデータセットを入手することが実践的または高価でないシナリオでの驚くべき可能性を開くものです。 新しい概念を素早く把握し、オブジェクトを認識し、複雑な言語を理解し、限られたトレーニング例でも正確な予測を行うモデルを想像してみてください。Few Shot Learningはまさにそれを可能にし、さまざまなドメインでのさまざまな課題へのアプローチ方法を変えています。Few…
「パッチのせいかもしれませんか? このAIアプローチは、ビジョントランスフォーマーの成功における主要な貢献要素を分析します」
畳み込みニューラルネットワーク(CNN)はコンピュータビジョンのタスクのバックボーンとなってきました。オブジェクト検出から画像の超解像まで、あらゆる問題に対して、CNNは行き先アーキテクチャとなっています。実際には、深層学習領域での有名な飛躍(例:AlexNetなど)は、畳み込みニューラルネットワークのおかげで可能になりました。 しかし、Transformerモデルに基づいた新しいアーキテクチャであるVision Transformer(ViT)が現れ、特に大規模なデータセットにおいて古典的な畳み込みアーキテクチャを圧倒し、有望な結果を示したことで状況は変わりました。それ以来、この分野では長年にわたってCNNで対処されてきた問題に対してViTベースのソリューションを可能にしようとしています。 ViTは、画像を処理するために自己注意層を使用しますが、これらの層の計算コストはピクセルごとの画像の数に対して二次的にスケーリングされます。そのため、ViTはまず画像を複数のパッチに分割し、それらを線形的に埋め込み、そのパッチのコレクションに直接Transformerを適用します。 元のViTの成功に続いて、多くの研究がViTアーキテクチャを改良してパフォーマンスを向上させました。自己注意を新しい操作で置き換える、他の小さな変更を行うなど。しかし、これらの変更にもかかわらず、ほとんどのViTアーキテクチャは共通のシンプルなテンプレートに従います。すべてのネットワークはネットワーク全体で均等なサイズと解像度を維持し、交互のステップで空間とチャネルのミキシングを実現することで等方性の振る舞いを示します。さらに、すべてのネットワークはパッチの埋め込みを使用してネットワークの開始時にダウンサンプリングを可能にし、シンプルで均一なミキシング設計を容易にします。 このパッチベースのアプローチは、すべてのViTアーキテクチャの共通の設計選択肢であり、全体の設計プロセスを簡素化します。そこで、質問が出てきます。ビジョンTransformerの成功は、主にパッチベースの表現によるものですか?それとも、自己注意やMLP(Multi-Layer Perceptron)などの高度で表現豊かな技術の使用によるものですか?ビジョンTransformerの優れたパフォーマンスに貢献する主要な要素は何でしょうか。 それを確かめる方法があり、それはConvMixerと呼ばれています。 ConvMixerの概要。出典:https://openreview.net/forum?id=rAnB7JSMXL ConvMixerは、ViTのパフォーマンスを分析するために開発された畳み込みアーキテクチャです。それはViTと多くの点で非常に似ています:画像のパッチに直接作用し、ネットワーク全体で一貫した解像度を維持し、画像の異なる部分での空間的なミキシングとチャネルごとのミキシングを分離します。 ただし、ConvMixerの重要な違いは、Vision TransformerやMLP-Mixerモデルで使用される自己注意メカニズムとは異なり、標準の畳み込み層を使用してこれらの操作を実現することです。結果として、深度方向とポイント方向の畳み込み演算は、自己注意やMLP層よりも計算コストが低くなります。 この極めてシンプルなConvMixerは、同じパラメータ数を持つResNetなどの「標準的な」コンピュータビジョンモデル、および対応するViTやMLP-Mixerのバリアントよりも優れた性能を発揮します。これは、パッチベースの等方性のミキシングアーキテクチャが、よく行動するミキシング操作のほとんどの選択肢とうまく機能する強力なプリミティブであることを示しています。 ConvMixerは、標準の畳み込みのみを使用して、パッチ埋め込みの空間的およびチャネルの位置を独立してミキシングします。これは、ViTやMLP-Mixerの大きな受容野に触発された大きなカーネルサイズを使用することで、大幅なパフォーマンス向上を実現することができます。最後に、ConvMixerは、将来のパッチベースのアーキテクチャにおける新しい操作のベースラインとして機能することができます。
YOLOv7 最も先進的な物体検出アルゴリズム?
2022年7月6日はAIの歴史において画期的な出来事として記録されるでしょうなぜなら、この日にYOLOv7がリリースされたからですリリース以来、YOLOv7はコンピュータビジョン開発者コミュニティで最も注目されており、その理由は正当なものですYOLOv7は既に[…]としてのマイルストーンとして認識されています
画像分類において、拡散モデルがGANより優れていることがAI研究で明らかになりましたこの研究では、BigBiGANなどの同等の生成的識別的手法に比べて、拡散モデルが分類タスクにおいて優れた性能を発揮することが示されました
統一された非教示学習視覚表現の学習は重要でありながらも困難な課題です。多くのコンピュータビジョンの問題は、識別または生成の2つの基本的なカテゴリに分類されます。個々の画像または画像のセクションにラベルを割り当てることができるモデルは、識別表現学習を通じて訓練されます。生成学習を使用する場合、画像を作成または変更し、修復、超解像などの関連する操作を実行するモデルを作成します。統一表現学習者は両方の目標を同時に追求し、最終モデルは識別し、固有の視覚的アーティファクトを作成することができます。このタイプの統一表現学習は困難です。 最初の両方の問題を同時に解決するディープラーニングの手法の1つはBigBiGANです。しかし、より最新の手法の分類および生成のパフォーマンスは、より専門化されたモデルを使用してBigBiGANを上回っています。BigBiGANの主な精度およびFIDの欠点に加えて、エンコーダーによる他の手法と比較してかなり高いトレーニング負荷があり、より遅く、より大きなGANです。 PatchVAEは、VAEのパフォーマンスを認識タスクにおいて改善するために、中間レベルのパッチ学習に集中します。残念ながら、その分類の改善はまだ教示的なアプローチに大きく遅れを取り、画像生成のパフォーマンスも大きく損なわれます。 最近の研究では、監督ありおよび監督なしの両方で生成および分類のパフォーマンスが良い結果を出しています。統一の自己教示学習表現学習は、自己教示画像表現学習の作業の数に比べてまだ探求されている領域です。一部の研究者は、識別モデルと生成モデルは本質的に異なり、それぞれが先行の欠陥のために他方に適した表現ではないと主張しています。生成モデルには、高品質の再構築と作成に低レベルのピクセルおよびテクスチャの特徴を捉える表現が必要です。 一方、識別モデルは、特定のピクセル値ではなく、画像の内容の意味に基づいて荒いレベルでオブジェクトを区別するために主に高レベルの情報に依存しています。しかし、彼らは、モデルが低レベルのピクセル情報に対して傾向を持たなければならないが、分類タスクにも優れたモデルを学習するMAEやMAGEのような現在の技術がBigBiGANの初期の成功を支持していると述べています。最新の拡散モデルも生成の目標を達成するのに非常に成功しています。ただし、その分類の可能性はほとんど活用されず、研究されていません。メリーランド大学の研究者は、ゼロから統一表現学習者を作成する代わりに、最先端の拡散モデル、強力な画像生成モデルが既に強力な分類能力を持っていると主張しています。 図1:アプローチと結果の概要。彼らは、拡散モデルが統一の自己教示画像表現を学習し、生成と分類の両方に優れたパフォーマンスを発揮できることを示唆しています。U-Netブロック番号と拡散ノイズのタイムステップに関する特徴抽出手順を調査します。さらに、さまざまな特徴マップのプーリングサイズについても調査します。線形(A)、多層パーセプトロン(B)、CNN(C)、およびアテンションベースのヘッド(D)など、いくつかの単純な特徴分類アーキテクチャも調査します。 ImageNet-50の凍結された特徴に対してトレーニングされた分類ヘッドの結果は、ブロック番号24およびノイズタイムステップ90で計算され、右側に表示されます。 図1は、これら2つの基本的に異なる課題における彼らの素晴らしい成功を示しています。BigBiGANと比較して、拡散モデルを使用した彼らの戦略は、はるかに優れた画像生成性能とより優れた画像分類性能を生み出します。その結果、拡散モデルは、分類と生成の両方を最適化するための最新の統一の自己教示表現学習者に非常に近いことを示しています。拡散モデルでの特徴の選択は、彼らの主な困難の1つです。ノイズステップと特徴ブロックを選択するのは非常に難しいため、彼らはさまざまな側面の適用可能性を調べ、比較します。これらの特徴マップは、チャンネルの深さと空間解像度に関してもかなり大きい場合があります。 彼らはまた、線形分類層を置き換えるためのいくつかの分類ヘッドを提供しており、これにより生成性能を犠牲にすることなく、またはより多くのパラメータを追加することなく分類結果を向上させることができます。彼らは、適切な特徴抽出を伴った優れた分類子として拡散モデルが分類問題に利用できることを示しています。そのため、彼らの手法は任意の事前学習済み拡散モデルに使用することができ、これらのモデルのサイズ、速度、および画像品質の今後の改善によって利益を得ることができます。拡散特徴の転移学習への有効性も検証され、他のアプローチとの特徴の直接比較も行われています。 彼らは、多くのFGVCデータセットにおけるデータの不足を示したため、ファイングレインドビジュアル分類(FGVC)を下流タスクとして選択し、教師なし特徴の使用を求めるものであり、拡散ベースのアプローチはFGVC転移コンテキストで教師なしアプローチを制限するとされる色不変性の種類に依存しないため、特に関連があります。彼らは、ResNetsとViTsからの特徴と比較するために、よく知られた中心化カーネルアラインメント(CKA)を使用して特徴を比較しています。 彼らの貢献は次のとおりです: • 無条件の画像生成において26.21 FID(BigBiGANに対して-12.37)とImageNet上の線形プロービングにおいて61.95%の精度(BigBiGANに対して+1.15%)を達成し、拡散モデルが統一表現学習として利用できることを示しています。 • 拡散プロセスから最も有用な特徴表現を得るための分析と蒸留のガイドラインを提供しています。 • 分類シナリオでの拡散表現の使用について、アテンションベースのヘッド、CNN、専門のMLPヘッドを標準的な線形プロービングと比較しています。 • さまざまな有名なデータセットを使用して、拡散モデルの転移学習特性をファイングレインドビジュアルカテゴリ化(FGVC)を下流タスクとして検証しています。 • 拡散モデルによって学習された多くの表現を、他のアーキテクチャや事前学習技術、さらには異なるレイヤーや拡散特徴と比較するためにCKAを使用しています。
1時間以内に初めてのディープラーニングアプリを作成しましょう
私はもう10年近くデータ分析をしています時折、データから洞察を得るために機械学習の技術を使用しており、クラシックな機械学習を使うことにも慣れています
ハイパーパラメータ最適化のためのトップツール/プラットフォーム2023年
ハイパーパラメータは、モデルの作成時にアルゴリズムの振る舞いを制御するために使用されるパラメータです。これらの要因は通常のトレーニングでは見つけることができません。モデルをトレーニングする前に、それらを割り当てる必要があります。 最適なハイパーパラメータの組み合わせを選ぶプロセスは、機械学習におけるハイパーパラメータの最適化またはチューニングとして知られています。 タスクに応じて利点と欠点を持つ、いくつかの自動最適化方法があります。 ディープラーニングモデルの複雑さとともに、ハイパーパラメータの最適化のためのツールの数も増えています。ハイパーパラメータの最適化(HPO)には、オープンソースのツールとクラウドコンピューティングリソースに依存したサービスの2つの種類のツールキットが一般的にあります。 以下に、MLモデルのハイパーパラメータ最適化に使用される主要なハイパーパラメータ最適化ライブラリとツールを示します。 ベイズ最適化 ベイジアン推論とガウス過程に基づいて構築されたPythonプログラムであるBayesianOptimisationは、ベイジアングローバル最適化を使用して、可能な限り少ない反復回数で未知の関数の最大値を見つけます。この方法は、探索と活用の適切なバランスを取ることが重要な高コスト関数の最適化に最適です。 GPyOpt GPyOptは、ベイジアン最適化のためのPythonオープンソースパッケージです。ガウス過程モデリングのためのPythonフレームワークであるGPyを使用して構築されています。このライブラリは、ウェットラボの実験、モデルと機械学習手法の自動セットアップなどを作成します。 Hyperopt Hyperoptは、条件付き、離散、および実数値の次元を含む検索空間上の直列および並列最適化に使用されるPythonモジュールです。ハイパーパラメータの最適化(モデル選択)を行いたいPythonユーザーに、並列化のための手法とインフラストラクチャを提供します。このライブラリでサポートされているベイジアン最適化の手法は、回帰木とガウス過程に基づいています。 Keras Tuner Keras Tunerモジュールを使用すると、機械学習モデルの理想的なハイパーパラメータを見つけることができます。コンピュータビジョン向けの2つのプリビルドカスタマイズ可能なプログラムであるHyperResNetとHyperXceptionがライブラリに含まれています。 Metric Optimisation Engine (MOE) Metric Optimisation Engine(MOE)は、最適な実験設計のためのオープンソースのブラックボックスベイジアングローバル最適化エンジンです。パラメータの評価に時間や費用がかかる場合、MOEはシステムのパラメータ最適化方法として有用です。A/Bテストを通じてシステムのクリックスルーや変換率を最大化したり、高コストのバッチジョブや機械学習予測手法のパラメータを調整したり、エンジニアリングシステムを設計したり、現実の実験の最適なパラメータを決定したりするなど、さまざまな問題に対応できます。 Optuna Optunaは、機械学習に優れた自動ハイパーパラメータ最適化のためのソフトウェアフレームワークです。ハイパーパラメータの検索空間を動的に構築するための命令的な定義によるユーザAPIを提供します。このフレームワークは、プラットフォームに依存しないアーキテクチャ、シンプルな並列化、Pythonicな検索空間のための多くのライブラリを提供します。…
「SimCLRの最大の問題を修正する〜BYOL論文の解説」
SimCLRは対比学習のアイデアを成功裏に実装し、当時新たな最先端の性能を達成しました!それにもかかわらず、このアイデアには根本的な弱点があります!…に対する感度が高いのです
ソースコード付きのトップ14のデータマイニングプロジェクト
現代では、データマイニングと機械学習の驚異的な進歩により、組織はデータに基づく意思決定を行うための先進的な技術を備えています。私たちが生きるデジタル時代は、急速な技術の発展によって特徴付けられ、よりデータに基づいた社会の道を切り開いています。ビッグデータと産業革命4.0の登場により、組織は貴重な洞察を抽出し、イノベーションを推進するために利用できる膨大な量のデータにアクセスできるようになりました。本記事では、スキルを磨くことができるトップ10のデータマイニングプロジェクトについて探っていきます。 データマイニングとは? データマイニングは、ユーザーから収集されるデータや企業の業務に重要なデータから隠れたパターンを見つけるプラクティスです。これはいくつかのデータ整形手順に従います。ビジネスは、この膨大な量のデータを収集するクリエイティブな方法を探して、有用な企業データを提供するためのデータマイニングがイノベーションのための最も重要な手法の1つとして浮上しています。データマイニングプロジェクトは、現在の科学のこの領域で働きたい場合には理想的な出発点かもしれません。 トップ14のデータマイニングプロジェクト 以下は、初心者、中級者、上級者向けのトップ14のデータマイニングプロジェクトです。 住宅価格予測 ナイーブベイズを用いたスマートヘルス疾患予測 オンラインフェイクロゴ検出システム 色検出 製品と価格の比較ツール 手書き数字認識 アニメ推奨システム キノコ分類プロジェクト グローバルテロリズムデータの評価と分析 画像キャプション生成プロジェクト 映画推奨システム 乳がん検出 太陽光発電予測 国勢調査データに基づく成人の収入予測 初心者向けデータマイニングプロジェクト 1. 住宅価格予測 このデータマイニングプロジェクトは、住宅データセットを利用して物件価格を予測することに焦点を当てています。初心者や中級レベルのデータマイナーに適しており、サイズ、場所、設備などの要素を考慮して家の販売価格を正確に予測するモデルを開発することを目指しています。 決定木や線形回帰などの回帰技術を利用して結果を得ます。このプロジェクトでは、様々なデータマイニングアルゴリズムを利用して物件価値を予測し、最も高い精度評価を持つ予測を選択します。過去のデータを活用することで、このプロジェクトは不動産業界内での物件価格の予測に関する洞察を提供します。…
北京大学の研究者は、FastServeを紹介しました:大規模な言語モデルLLMsのための分散推論サービスシステム
大規模言語モデル(LLM)の改善により、さまざまな分野での機会が生まれ、新しい波の対話型AIアプリケーションがインスピレーションを与えています。最も注目すべきものの1つはChatGPTで、ソフトウェアエンジニアリングから言語翻訳までの問題を解決するために、人々がAIエージェントと非公式にコミュニケーションを取ることを可能にします。 ChatGPTは、その驚異的な能力のために、史上最も急成長しているプログラムの1つです。MicrosoftのNew Bing、GoogleのBard、MetaのLLaMa、StanfordのAlpaca、DatabricksのDolly、UC BerkeleyのVicunaなど、多くの企業がLLMやChatGPTのような製品をリリースするトレンドに追従しています。 LLMの推論は、ResNetなどの他の深層ニューラルネットワーク(DNN)モデルの推論とは異なる特徴を持っています。LLM上に構築された対話型AIアプリケーションは、機能するために推論を提供する必要があります。これらのアプリの対話的なデザインは、LLM推論のジョブ完了時間(JCT)を迅速に行う必要があり、ユーザーエクスペリエンスを魅力的にするためです。たとえば、データをChatGPTに送信した場合、消費者は即座の応答を期待しています。ただし、LLMの数と複雑さのため、推論サービングインフラは大きな負荷を受けています。企業は、LLM推論操作を処理するために、GPUやTPUなどのアクセラレータを備えた高価なクラスタを設置しています。 DNNの推論ジョブは通常、確定的で非常に予測可能です。つまり、モデルとハードウェアが推論ジョブの実行時間を大部分に決定します。たとえば、同じResNetモデルを特定のGPU上で使用しても、さまざまな入力写真の実行時間はわずかに異なります。一方、LLMの推論位置はユニークな自己回帰パターンを持っています。LLMの推論作業は複数のラウンドを経ます。各イテレーションは1つの出力トークンを生成し、それが次のイテレーションでの次のトークンに追加されます。初めには不明な出力の長さは、実行時間と入力の長さの両方に影響を与えます。ResNetなどの決定論的モデル推論タスクの大部分は、ClockworkやShepherdのような既存の推論サービングシステムによって対応されています。 これらのシステムは、正確な実行時間のプロファイリングに基づいてスケジューリングの決定を行いますが、実行時間が可変のLLM推論には効果的ではありません。LLM推論の最も先進的な方法はOrcaです。Orcaはイテレーションレベルのスケジューリングを提案し、各イテレーション後に現在の処理バッチに新しいジョブを追加するか、完了したジョブを削除することができます。ただし、Orcaは先入れ先出し(FCFS)を使用して推論ジョブを処理します。スケジュールされたタスクは完了するまで連続して実行されます。推論ジョブの制約されたGPUメモリ容量と低いJCT要件のため、処理バッチを任意の数の入力関数で拡張することはできません。完了まで実行されるまでのブロックの問題はよく知られています。 LLMはサイズが大きく、絶対的な意味で実行に時間がかかるため、LLM推論操作ではこの問題が特に深刻です。特に出力の長さが長い場合、大規模なLLM推論ジョブは完了に時間がかかり、後続の短いジョブを妨げます。北京大学の研究者たちは、FastServeと呼ばれるLLM向けの分散推論サービングソリューションを開発しました。FastServeは、LLM推論のイテレーションレベルのスケジューリングと自己回帰パターンを利用して、各出力トークンのレベルで事前処理を可能にします。FastServeは、キュー内の別のジョブによって予定されたタスクを続行するか、中断するかを選択できます。これにより、FastServeはJCTと先行ブロッキングを削減し、先制的なスケジューリングを介しています。 FastServeの基盤となるのは、ユニークなスキップジョインのマルチレベルフィードバックキュー(MLFQ)スケジューラです。MLFQは、情報がない環境で平均JCTを最小化するためのよく知られた手法です。各作業は最も高い優先度キューで開始され、一定の時間内に完了しない場合は次の優先度キューに降格されます。LLM推論は、セミ情報が無関係であり、出力の長さが事前にはわからないということを意味します。これがLLM推論と従来の状況の主な違いです。入力の長さは、初期の出力トークンを作成するための実行時間を決定し、LLM推論の自己回帰パターンのため、その実行時間は後続のトークンよりもはるかに長くかかる場合があります。 入力が長く、出力が短い場合、初期の出力トークンの実行時間が大部分を占めます。彼らは、この特性を伝統的なMLFQにスキップジョインを追加するために使用します。到着タスクは、最初の出力トークンの実行時間をラインの降格閾値と比較して、適切なキューに参加します。常に最も高い優先度キューに入るのではなく、参加したキューよりも優先度の高いキューはバイパスされ、降格が最小限に抑えられます。MLFQによる先制的なスケジューリングは、中断されたが完了していないジョブを一時的な状態で保持するため、追加のメモリオーバーヘッドを加えます。LLMは、各Transformerレイヤーごとにキー値キャッシュを保持し、中間状態を保存します。バッチサイズが超過しない限り、FCFSキャッシュにはスケジュールされたジョブの中間状態を保持する必要があります。ただし、MLFQで開始された追加のジョブは、優先度の低いキューに降格されます。MLFQの中断されたが完了していないすべてのジョブは、キャッシュによって保持される中間状態を持つ必要があります。LLMのサイズとGPUの制限されたメモリスペースを考慮すると、キャッシュがオーバーフローする可能性があります。キャッシュがいっぱいの場合、スケジューラは新しいジョブの開始を単純に遅延させることができますが、これにより再び先行ブロッキングが発生します。 代わりに、彼らは生産的なGPUメモリ管理システムを開発し、スケジュールされたときに低優先度のキュー内のプロセスの状態を前もってアップロードし、キャッシュがほぼいっぱいになったときに状態をオフロードします。効率を高めるために、パイプライン処理と非同期メモリ操作を使用しています。FastServeは、テンソルとパイプライン並列処理などの並列化技術を使用して、1つのGPUに収まらない巨大なモデルのために多数のGPUを使用した分散推論サービスを提供します。パイプラインのブロックを減らすために、スケジューラは同時に複数のジョブのバッチを実行します。キーと値のキャッシュは、キーと値のキャッシュマネージャによって組織化され、GPUとホストメモリの間のメモリスワッピングの管理も行います。彼らは、NVIDIA FasterTransformerをベースにしたFastServeシステムのプロトタイプを実際に実装しました。結果は、FastServeが最先端のOrcaソリューションと比較して、平均およびテールのジョブ完了時間をそれぞれ最大5.1と6.4向上させることを示しています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.