Learn more about Search Results Midjourney - Page 7

「自分自身でタスクを行う方法を知っている場合に限り、LLMsを使用してください」

「ほとんどの人(または全員)にとって、LLMは驚くほど早く複雑なことを片付けてくれる神秘的な箱です私たちは通常、必要なものを提供してくれる限り、「どのように」行われるのかにはあまり興味を持ちません...」

「創発的AIの倫理的なフロンティア:導入と重要性」

イントロダクション 生成AIは、コンテンツの創造、模倣、強化という顕著な能力を持つことから、無類の可能性と複雑な倫理的ジレンマが両立する時代をもたらしました。本記事では、生成AIの倫理的フロンティアに深く掘り下げ、急速に変化するデジタルランドスケープにおけるその重要性を強調します。この記事は、人間の自律性の脅威や現実のゆがみから機会の不平等や文化的表現まで、生成AIに関連する多面的な課題を明らかにしようとします。これらの課題に取り組むことで、我々はこの変革的な技術を責任を持って航行し、社会の利益を確保しつつ、重要な価値観と権利を守ることができます。本記事では、開発者や組織が倫理的な原則を維持するために採用できる戦略と解決策についての示唆を提供しています。 学習目標: 人間の自律性や現実のゆがみなど、生成AIにおける倫理的課題を理解する。 人間の自律性、真実、多様性をAI開発において守るための戦略を探究する。 データセキュリティ、プライバシー、およびAI関連の機会の不平等に取り組む重要性を認識する。 自律性:人間の意思決定に対する課題 AI開発に関連する重要なリスクの一つは、人間の自律性に損害を与える可能性です。例えば、最近の事例では、ある組織がAIを使用して年齢や性別に基づいて雇用の決定を違法に差別しました。この例は、倫理的な考慮をせずにAIに意思決定を委任する危険性を示しています。 最初のリスクは、AIへの過度な依存にあります。協力ツールとしてではなく、意思決定にAIを頼ることは、批判的思考能力の低下につながる可能性があります。AIツールがより効率的になるにつれて、人々は盲目的にそれらを信頼し、独立した判断力を損なう可能性があります。 二つ目のリスクは、偏見の持続です。AIシステムが人間の介入なしで意思決定を行う場合、意図的であれ非意図的であれ、偏見が持続する可能性があり、人間の自律性がさらに侵食される恐れがあります。 三つ目のリスクは、全知全能の幻想に関わります。人々がAIツールを透明な意思決定プロセスを理解せずにますます信頼するようになると、これらのツールは神秘的な全知全能の存在となるかもしれません。これは、自己の判断力よりもAIを信頼する世代を生み出す、懸念すべき展望です。 AI開発における人間の自律性の保護 人間の自律性を守るために、AI開発中に取り組むべき手順があります: 人間をループに含める: 人間の関与は、AIが欠如する倫理的価値観、道徳、文脈の認識をもたらします。人間とAIの協力を促進することで、より良い、多様かつ正確な結果が得られます。 ユーザーを強化する: AIユーザーを意思決定プロセスの積極的な参加者にする。AIとのインタラクションで文脈と明確化を提供するよう促す。 透明な意思決定: 透明で追跡可能かつ監査可能なAIモデルを開発する。ユーザーはAIの結論がどのように導かれたのかを理解することができるべきです。 積極的なモニタリング: 定期的にAIシステムを監査しテストすることで、倫理的および法的基準との一致を確認します。これにより、AIが人間の自律性を損なうのではなく、人間に利益をもたらし続けるようにします。 AIにおける真実と現実の保護のための戦略と解決策 生成AIの第二の倫理的フロンティアは、現実をゆがめ真実を損なう可能性です。ディープフェイクの出現は、AIツールが欺瞞や操作のために悪用される例です。 この現実のゆがみに関連するリスクには、情報の拡散、メンタルヘルスへの影響、文化的価値の喪失、少数派の意見の抑圧が含まれます。最終的に、これらのリスクは社会の不安定につながる可能性があります。…

Segmind APIsを使用した安定した拡散モデルのサーバーレスAPIの活用

紹介 現代のソフトウェア開発において、サーバーレスコンピューティングの登場により、アプリケーションの構築と展開の方法が革命されました。利用可能なツールとテクノロジーの中で、サーバーレスAPIは堅牢でスケーラブル、効率的なアプリケーションを作成するためのエンエーブラーとなっています。また、現代のソフトウェアシステムに< a href=”https://www.voagi.com/midjourney-vs-stable-diffusion-ai-image-generators-battle.html”>Stable Diffusionモデルなどの人工知能技術を統合する必要性があるため、これらのサーバーレスAPIを使用する能力は有用です。本記事では、サーバーレスAPIの概念を探求し、AIおよび機械学習システムのリーディングカンパニーであるSegmindが提供する幅広いサーバーレスAPIをプロジェクトに統合する方法について説明します。 学習目標 現代のアプリケーション開発におけるサーバーレスAPIの理解 SegmindのサーバーレスAPIとその応用の習得 SegmindのAPIをNode.jsとPythonで使用する方法の学習 APIに関連するセキュリティ上の問題に対処する この記事は、データサイエンスブロガソンの一部として掲載されました。 サーバーレスAPIの理解 SegmindのサーバーレスAPIに入る前に、サーバーレスAPIとは何か、なぜ現代のソフトウェア開発において画期的な存在なのかについて理解しましょう。 サーバーレスAPI:簡潔な歴史 サーバーレスAPIは、オンライン取引を容易にするために設計されたアプリケーションプログラミングインタフェースの一形態であり、開発者が外部サービスとのやり取りを行う方法を変革しました。従来、開発者は特定のタスク(例:支払い処理、マッピングサービスなど)のためにゼロから関数を構築する必要がありました。このアプローチはしばしば時間がかかり、リソースが多く必要でした。 サーバーレスAPIは異なります。支払い認証、マッピング、天気データなど、目的を果たすための小型アプリケーションのようなものです。革新的な点は、これらのAPIがサーバーレスバックエンドによって動作することで、開発者は物理サーバーの管理やサーバーメンテナンスの複雑さを心配する必要がなくなったということです。 サーバーレスAPIの利点は何ですか? サーバーレスAPIの利点は多岐に渡ります: サーバー管理が不要:サーバーレスAPIなら物理サーバーの管理の手間をかけることなく、新しいAPIやアプリケーションの開発に集中することができます。これにより、開発リソースの効率的な活用が可能になります。 スケーラビリティ:サーバーレスAPIはスケーラブルであり、ユーザーの需要の急増にも問題なく対応することができます。オンデマンドのスケーラビリティにより、トラフィックの増加時でも一貫したユーザーエクスペリエンスを提供します。 レイテンシーの低減:サーバーレスAPIはオリジンサーバーにホストされ、そこからアクセスされます。これにより、レイテンシーが低減し、アプリケーションの全体的なパフォーマンスと応答性が向上します。これは、Stable DiffusionやLarge Language Models(LLM)などの大規模モデルにも有用です。これはSegmindのサーバーレスAPIからも利益を得られます。…

「LLMsでテキストデータの力を解き放つ」

「顧客レビュー、社員調査、そしてソーシャルメディアの投稿は、特定の製品やサービスに対する人々の態度を明らかにする上で非常に効果的ですしかし、ほとんどのデータアナリストはほとんど何も行いません...」 (Kokyaku rebyū, shain chōsa, sosharu media no tōkō wa, tokutei no seihin ya sābisu ni taisuru hitobito no taido o akiraka ni suru…

ツールフォーマー:AIモデルに外部ツールの使用方法をガイドする

また、トレーニングの打ち切り時間はすべてのLLMの固有の弱点です彼らは新しいものについてのクエリに答えるのに苦労しています緩い解決策は、外部のプラグイン(ChatGPTプラグインなど)を使用することですそれでも、ユーザーは...

ジェネラティブ人工知能を解明:拡散モデルと視覚コンピューティングの進化についての詳細な解説

コンピュータグラフィックスおよび3Dコンピュータビジョングループは、コンピュータ生成の視覚を組み合わせたり、写真からシーンの物理的特性を推測したりするために、数十年間物理的に現実的なモデルを作成するために取り組んできました。ビジュアルエフェクト、ゲーム、画像およびビデオ処理、コンピュータ支援設計、仮想および拡張現実、データ可視化、ロボティクス、自律型車両、リモートセンシングなどを含むいくつかの業界は、レンダリング、シミュレーション、ジオメトリ処理、フォトグラメトリを含むこの手法に基づいて構築されています。生成的人工知能(AI)の台頭により、視覚コンピューティングについての完全に新しい思考のあり方が現れました。生成的AIシステムにより、書き込みのプロンプトまたは高レベルの人間の指示のみを入力として、写真、映画、または3Dオブジェクトの作成および操作が可能になります。 これらのテクノロジーは、以前は専門的なトピックの専門家にしか利用できなかった視覚コンピューティングの多くの時間を要するタスクを自動化します。Stable Diffusion、Imagen、Midjourney、またはDALL-E 2およびDALL-E 3などの視覚コンピューティングの基礎モデルは、生成的AIの無類の能力を開放しました。これらのモデルは、何億ものテキストと画像のペアリングで訓練された後、すでに「それをすべて見てきた」と言えるほど膨大で、数十億の学習可能なパラメータを持っています。これらのモデルは、非常に強力なグラフィックス処理ユニット(GPU)のクラウドで訓練されました。 画像、ビデオ、および3Dオブジェクトを生成するために使用される畳み込みニューラルネットワーク(CNN)に基づく拡散モデルは、CLIPなどのトランスフォーマベースのアーキテクチャを使用して計算されたテキストを多様な形式で統合します。2D画像生成のための基礎モデルを他の高次元のドメイン(ビデオや3Dシーン作成など)で使用するために、学術界にはまだ大きな貢献をする余地があります。 主により具体的な種類のトレーニングデータの必要性がこれを引き起こします。たとえば、ウェブ上には高品質で多様な3Dオブジェクトや設定の例よりも、低品質で一般的な2D写真の例がはるかに多くあります。また、ビデオ、3Dシーン、または4Dマルチビューコンシステントシーン合成に必要なより大きな次元に合わせて2Dイメージ生成システムをスケーリングする方法がすぐには明らかではありません。現在のネットワークアーキテクチャは、(ラベルのない)大量のビデオデータがウェブ上で利用可能であっても、訓練するには時間がかかりすぎるか、適切な計算リソースがないため、しばしば非効率なのです。これにより、拡散モデルは推論時間が非常に遅くなります。これは、ネットワークの大きさと反復的な性質に起因します。 図1:視覚コンピューティングの拡散モデルの理論と応用については、この最新の論文でカバーされています。これらのモデルは、最近では2Dおよび3D/4Dでのイメージ、ビデオ、およびオブジェクトの生成と変更のための受け入れられた基準として取って代わりました。 未解決の問題にもかかわらず、視覚コンピューティングの拡散モデルの数は昨年急増しました(図1に示すような例があります)。複数の大学の研究者によって開発されたこの最新のレポート(STAR)の目的は、視覚コンピューティングでの拡散モデルの応用に焦点を当てた多くの最近の出版物の整理されたレビューを提供し、拡散モデルの原理を教え、未解決の問題を特定することです。

「ChatGPTとAIでお金を稼ぐ3つの方法」

ジェネラティブAIを活用して収入を増やすために、これらの簡単な手順に従ってください

「RAGの語義における課題に取り組む ドメイン固有の検索の見落とされがちな面について」

数千のドメイン固有ドキュメントが類似点を持ち、埋め込みでは関連するドキュメントを検索する際に一部不足がある場合、ハイブリッド検索、階層的ドキュメント順位付け、指導者埋め込みを利用して、コモン・レトリーバル・オーグメンテッド・ジェネレーション(RAG)セットアップに対処します

「LLMとGUIの協力:チャットボットを超えて」

私たちは、自然言語バーの形で、会話型AIとグラフィカルユーザインターフェース(GUI)の相互作用を最適に融合させるための革新的なUXアプローチを紹介しますそれは画面の下部に配置されています

「CLIP、直感的にも網羅的に解説」

この投稿では、「コントラスティブ言語-画像事前学習(CLIP)」について学びますこれは、高度に特化したものを作るために使用できるほど良いビジョンと言語表現を作成するための戦略です...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us