Learn more about Search Results Go - Page 7
- You may be interested
- デシは、コード生成のためのオープンソー...
- トランスフォーマーモデルでのNLPの台頭 |...
- 「すべてのオンライン投稿は、AIの所有物...
- 「AIがインターネット・オブ・シングスの...
- QCNet(キューシーネット):高度な軌道予...
- 「AIがPowerPointと出会う」
- ロボットを制御するためのより簡単な方法
- 「価格最適化の技術を習得する — データサ...
- NLPの探求 – NLPのキックスタート(...
- LLaMA 皆のためのLLM!
- 基本に戻る週3:機械学習の紹介
- 8月14日から20日までのトップ記事:ChatGP...
- MySQLのJSON_ARRAYAGG関数をハッキングし...
- 「LlamaIndex vs LangChain 比較分析」
- 「データサイエンスの面接を改善する簡単...
このシンプルな履歴書が私にGoogle DeepMindの面接をもたらしました
さて、今日は私がインターンシップを受けるために使用した履歴書について話すことにしましょう…」
(ローマ字:Rokkagetsu de detā anarisuto no shigoto o te ni ireta hōhō)
2019年、私は国内でも最も名門の大学でコンピューターサイエンスの学位を追求していましたデータ業界での仕事につながることを期待して、応募を始めました
LangChain、Amazon SageMaker JumpStart、およびMongoDB Atlasの意味検索を利用した検索増強生成
生成AIモデルは、企業の業務を革命化する可能性がありますが、企業はデータの保護やAI生成コンテンツの品質を確保しながら、そのパワーを活用する方法を慎重に考慮する必要があります検索強化生成(RAG)フレームワークは、ドキュメントリポジトリ、データベース、APIなど、複数のソースからの外部データをプロンプトに追加することで、アイデアの生成を支援します
NLP、NN、時系列:Google Trendsのデータを使用して石油価格を予測することは可能ですか?
最初にWord2Vecを使用し、次にGoogleトレンドからGoogle検索の頻度をスクレイピングし、その後、時系列(フーリエ分解を経て)とKerasを使用したニューラルネットワークで予測を試みます...
GoogleのプロジェクトOpen Se Curaをご紹介しますこれは、セキュアでスケーラブル、透明性の高い、効率的なAIシステムの開発を加速するためのオープンソースフレームワークです
AIの成長とともに、それは生活のあらゆる側面で使用されています。その応用はあらゆる分野に広がり、さまざまな分野への取り組み方を変革する上で重要な役割を果たしています。その有用性は、医療、教育、交通、製造、小売り、金融など、さまざまなセクターに広がっています。 しかし、人工知能(AI)が私たちの日常生活にますます統合されるにつれて、確実かつ安全なAI体験のために、強力で効果的なコンピューティングシステムを構築することが必要です。しかし、問題があります:ハードウェアの革新は、機械学習(ML)モデルとソフトウェア開発の進化に追いつく必要があります。このバランスの乱れが、完全で安全なフルスタックシステムの構築を困難にしています。さらに、バッテリー技術が進歩しているにもかかわらず、小型デバイス市場はこれらの進歩に追いつくことができず、AIシステムの潜在的な強さと使用を制限しています。 その結果、Googleは「Project Open Se Cura」を発表しました。これは、安全でスケーラブルで透明で効率的なAIシステムの開発を加速させるためのオープンソースフレームワークです。これは以前はGoogle内で「Project Sparrow」として知られていました。「Project Open Se Cura」は、Googleのオープンソース開発への取り組みを強調しています。このイニシアチブは、オープンソースの設計ツールと知的財産(IP)ライブラリを作成することを含み、MLワークロードを処理するフルスタックシステムの成長を加速させることを目指して協力的な共同設計と開発プロセスに取り組んでいます。セキュリティ、効率性、スケーラビリティに焦点を当てたシステム設計の強化を目指し、次世代のAI体験を支えることを重視しています。 このプロジェクトはVeriSilicon、Antmicro、lowRISCなどの重要なパートナーとの緊密な協力のもとで開発されました。研究者たちは、各パートナーが開発プロセスに不可欠な知識とリソースを提供してくれたと強調しています。例えば、lowRISCはプロジェクトに安全な信頼のルートと開発・統合ツールを提供し、安全な基盤を保証しました。AntmicroはオープンソースのシステムレベルソフトウェアとRenodeを使用したシステムシミュレーションの専門知識を提供しました。VeriSiliconは商品化、BSP(Board Support Package)開発、IPデザイン、シリコンデザインの専門知識を提供しました。これらのツールにより、安全な機械学習機能をIPライブラリに追加することで、省電力AIシステムのコンセプト実証の開発が可能となりました。 研究者たちは、Open Se Curaのさらなる強化と開発に向けて協力的に取り組む予定です。彼らは、CHERI革新のためにケンブリッジ大学と、省電力および生成的AIのためにミシガン大学などの機関とのさらなる提携を積極的に求めています。 Googleは、これらの新しいツールを用いた可能性の探求に興奮し、広範なオープンソースコミュニティに参加し、貢献することを奨励しています。共同の取り組みは、革新を促進し、安全でスケーラブルかつ非常に効率的なAI体験を生み出すことを目指しています。研究者たちは、オープンソースコミュニティとの協力がAIの進歩の新たな時代を切り拓くことになると期待しています。 投稿元:【速報】Googleの「Project Open Se Cura」:安全でスケーラブルで透明で効率的なAIシステムの開発を加速するためのオープンソースフレームワーク
「Google マップは AI 機能で強化されました」
10月下旬、Googleはブログで、人気のあるマップアプリをさまざまな方法で強化するためのAIパワード機能を5つ発表しましたGeo部門のVP兼GMであるクリス・フィリップス氏によって書かれたこのアップデートでは、アプリユーザーが楽しむことができる5つの新機能が紹介されています最初のアップグレードは、能力の向上です...
「Google の CEO Sundar Pichai は AI を気候変動にたとえる」という記事です
サンフランシスコで開催されたアジア太平洋経済協力CEOサミットで、GoogleのCEOであるサンダー・ピチャイ氏がAIを気候変動に例えましたこのコメントは、「スマートAI規制に対するグローバルな合意をどのように得るか」という質問に対して出たものですCNBCによると、彼はAIが「広まり続ける」と述べ、「AIの進歩は...」と述べました
「Google Cloud Platformの探求:サービスと能力の包括的な概要」
この記事では、GCPが提供するさまざまなサービスについて詳しく説明し、クラウドコンピューティングの景色でのその重要性を強調します
Google AIが簡単なエンドツーエンドの拡散ベースのテキスト読み上げE3-TTSを提案します:拡散に基づくシンプルで効率的なエンドツーエンドのテキスト読み上げモデルに基づくものです
機械学習において、拡散モデルは画像や音声生成のタスクによく使われる生成モデルです。拡散モデルは、複雑なデータ分布をより単純な分布に変換する拡散プロセスを使用します。その主な利点は、特に画像や音声合成のようなタスクで高品質な出力を生成できることにあります。 テキスト・トゥ・スピーチ(TTS)システムの文脈では、拡散モデルの適用により、従来のTTSシステムと比べて明らかな改善が見られました。これは、中間的な特徴量の品質に対する強い依存や、展開、トレーニング、設定手続きに伴う複雑さなど、既存のシステムが抱える問題を解決する能力によるものです。 Googleの研究チームは、E3 TTS:イージーエンドツーエンド拡散ベースのテキスト・トゥ・スピーチを提案しました。このテキスト・トゥ・スピーチモデルは、拡散プロセスを利用して時間構造を維持します。このアプローチにより、モデルはプレーンなテキストを入力として受け取り、直接オーディオの波形を生成することができます。 E3 TTSモデルは、非自己回帰的な方法で入力テキストを効率的に処理し、連続処理を必要とせずに直接波形を出力することができます。さらに、話者の識別とアライメントの決定は、拡散中に動的に行われます。このモデルは、2つの主要なモジュールから構成されています。入力テキストから関連情報を抽出するために、事前学習済みのBERTモデルが使用され、BERTの出力を処理するために拡散UNetモデルが使用されます。拡散UNetモデルは、初期のノイズのある波形を反復的に洗練し、最終的な生波形を予測します。 E3 TTSは、オーディオの波形を生成するための反復的な洗練プロセスを採用しています。拡散プロセスを使うことで、追加の条件付け情報なしに、与えられたオーディオ内の柔軟な潜在的な構造をモデル化することができます。 E3 TTSは、事前学習済みのBERTモデルに基づいて構築されています。また、このシステムは音素やグラフェムのような音声表現に頼らずに動作します。BERTモデルはサブワード入力を取り、その出力は1D U-Net構造によって処理されます。これには、ダウンサンプリングとアップサンプリングのブロックが含まれ、リジッドな接続で接続されています。 E3 TTSは、現在の大規模言語モデルの最新の開発を活用し、事前学習済みのテキスト言語モデルからのテキスト表現を使用します。E3 TTSは、テキスト入力を使用して生成プロセスを合理化します。 このモデルはテキスト入力を使用して多言語でトレーニングすることができるため、システムの適応性が向上します。 E3 TTSで使用されるU-Net構造は、リジッドな接続で接続された一連のダウンサンプリングとアップサンプリングのブロックで構成されています。BERTの出力からの情報抽出を改善するために、クロスアテンションはトップのダウンサンプリング/アップサンプリングブロックに組み込まれています。下部のブロックではアダプティブソフトマックス畳み込みニューラルネットワーク(CNN)カーネルが使用され、そのカーネルサイズはタイムステップと話者によって決定されます。話者とタイムステップの埋め込みはFeature-wise Linear Modulation(FiLM)を介して結合され、チャネルごとのスケーリングとバイアスの予測を含みます。 E3 TTSのダウンサンプラーは、ノイズが多い情報を洗練し、24kHzからエンコードされたBERTの出力と同じ長さのシーケンスに変換することで、全体的な品質を大幅に向上させる重要な役割を果たします。逆に、アップサンプラーは、入力波形と同じ長さのノイズを予測します。 まとめると、E3 TTSは高品質なオーディオを生成する能力を示し、この分野の注目に値する品質レベルに近づいています。
「Google AIがAltUpを紹介」
「トランスフォーマー型ニューラルネットワークは、自然言語処理やコンピュータビジョン、ロボット工学、自律運転などの新興アプリケーションにおいて、驚くべき効果を示し、焦点となっていますしかし、これらのモデルの規模が増大することにより、コンピューティングにかかるコストや推論の待ち時間に関する課題が生じていますこれが...」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.