Learn more about Search Results Claude - Page 7
- You may be interested
- 学ぶための勇気: L1&L2正則化の解明(パ...
- 「AIの雇用展望:給与のトレンドと将来の...
- オープンソースLLMの歴史:ベースモデルの...
- このAI研究は、ロボット学習および具現化...
- 基本に戻ろう:プロビット回帰
- イーロン・マスク氏とXAiチームがGrokを発...
- 「E.U.法がディスインフォメーション...
- データ契約の裏側:消費者の責任の目覚め
- 「spacy-llmを使用したエレガントなプロン...
- 「ソフトロボットは自分自身を繰り返し膨...
- 確率的な関係の直感に反する性質
- AIの時代のIVRテスト:人間と機械のギャッ...
- AI論文は、高度なテクスチャリング、360度...
- 「Azure B シリーズの仮想マシンのパワー」
- 「カリフォルニアが自動運転車に関するフ...
コースを安定させる:LLMベースのアプリケーションの評価をナビゲートする
大型言語モデル(LLM)は話題になっており、多くの人々がそれを自分のアプリケーションに取り入れています関係データベース上の質問に答えるチャットボットやサポートするアシスタントなど...
エンタープライズデータの力を活用するための生成AI:Amazon Kendra、LangChain、および大規模言語モデルによる洞察
広範な知識を持つ大規模言語モデル(LLM)は、ほぼあらゆるトピックについて人間らしいテキストを生成することができますしかし、大量のデータセットでの訓練は、専門的なタスクに対しての利用価値を制限します継続的な学習がなければ、これらのモデルは初期の訓練後に現れる新しいデータやトレンドに無関心ですさらに、新しいLLMを訓練するためのコストも[…]
「Phindの新しいAIモデルは、コーディングにおいてGPT-4よりも優れており、GPT-3.5のような速度と16kのコンテキストを持っています」
“`html コーディングや技術的な問題解決では、複雑な質問に対する回答を求める際に速さと正確さのトレードオフがあります。開発者はしばしば迅速かつ信頼性のあるサポートが必要とされます。 GPT-4は応答時間が比較的遅いことが問題でした。回答を得るための遅延は生産性を阻害することがあります。 Phindのv7モデルは、GPT-4のコーディング能力を超える優れた速さでこれを行います。応答時間が5倍になり、Phindモデルは前任者に関連する50秒の待ち時間がかかることに比べて、たった10秒で技術的な質問に対する高品質な回答を提供します。 Phindモデルは7世代目になり、CodeLlama-34B fine-tunesの基盤を活用して構築されています。これは、HumanEvalスコアでGPT-4を上回る最初のモデルです。この新しいモデルは、高品質のコードと推論問題の70兆トークンを使って洗練されました。人間評価スコアが74.7%という素晴らしい成績を収めつつも、実世界での助けに関しては、このような指標を超越することも重要です。包括的なフィードバック収集とユーザーの経験を通じて、Phindモデルは実用的なコーディングシナリオでGPT-4の効用を一貫して満たすか上回る能力を示しています。 Phindモデルの一つの特徴はその速さです。NVIDIAのH100sとTensorRT-LLMライブラリのパワーを活用することで、1秒あたりに印象的な100トークンを単一ストリームで処理し、必要なユーザーに素早くサポートを提供することができます。 さらに、Phindモデルは広範なコンテキストを提供し、回答に最大で16,000トークンをサポートします。現在、モデルはウェブサイト上で12,000トークンまでの入力を許可し、残りの4,000トークンはウェブベースの結果に予約されています。 Phindモデルは多くの利点を提供していますが、改善が必要な領域もあることを認識する価値があります。特に複雑な問題の処理において、一貫性が課題となる場合があります。これらのケースでは、GPT-4よりも正しい答えに到達するまでにより多くの世代が必要な場合があります。 まとめると、Phindモデルは効率的で信頼性のあるコーディングサポートの持続的な問題への有望な解決策です。優れたコーディング能力と素晴らしい速さ、幅広いコンテキストサポートを組み合わせることで、ユーザーへの実世界の助けを提供する効果を持っています。このモデルが進化し続け、残された課題に取り組んでいく中で、技術的な質問の回答方法を革新し、開発者やテック愛好家により効率的かつ生産的なコーディング体験を提供する可能性を秘めています。 Phindの新しいAIモデルが、GPT-4を超えるコーディング能力とGPT-3.5のような高速性と16kコンテキストを持つは、最初にMarkTechPostで公開されました。 “`
ブレイブがLeoを紹介:ウェブページやビデオのリアルタイム要約を含むさまざまなタスクをサポートする人工知能アシスタント
利用者のプライバシーと正確なAIインタラクションに向けた大きな進歩として、名高いブラウザ開発者であるBraveが、デスクトップ版1.6のリリースと共に、その< a href=”https://www.voagi.com/create-chat-assistant-for-pdfs-and-articles-without-openai-key.html”>ネイティブAIアシスタント、レオを公開しました。その基盤モデルとして、Meta Llama 2の動力を使っているレオは、訪れたウェブページのコンテンツに基づいて利用者のクエリに応答し、AI生成コンテンツに関連する懸念事項を効果的に解決します。 今年初めにリリースされたBrave検索AIサマライザーの拡張機能であるレオは、検索バーから直接アクセスできます。8月のテストフェーズでは、Nightlyチャンネル(バージョン1.59)を通じて、数万人の開発者と利用者がブラウザとレオをダウンロードして評価し、その結果、レオは正式にBraveバージョン1.60に統合されました。 レオの特徴の一つは、利用者のプライバシーに対する取り組みです。他のチャットボットとは異なり、レオは会話を収集せず、利用者を追跡せず、無意味に反応を生成しません。代わりに、正確で関連性の高い情報を提供するために、ウェブコンテンツにのみ依存しています。 レオの無料版は、高度にセキュアなLlama 2モデルをベースにしています。これは、Metaのオープンソースモデルの特殊バリエーションです。しかしながら、Braveはレオプレミアムという有料サービスも導入しており、月額$15で提供されています。レオプレミアムには、論理的な推論とコード作成を重視したAnthropicが開発したClaude Instantモデルが搭載されています。このモデルは、より構造化された応答、指示の実行能力の向上、数学、プログラミング、多言語対応、質疑応答インタラクションの改善などを提供します。 Braveは、回答の正確さをさらに向上させるために、Anthropicのテクノロジーを統合し、Braveの検索APIを活用して最新のClaude 2モデルを訓練しています。このアプローチにより、Claude製品は検索支援生成(RAG)を達成し、より正確な回答を提供し、生成AIの幻想的傾向を抑えることができます。 安全性とプライバシーの面では、Braveは広範な対策を講じています。無料版では、レオの会話は匿名でプライベートに保たれ、対話の記録は行われません。データはモデルの訓練に使用されず、アカウントやログインは必要ありません。逆プロキシ技術により、すべての通話が匿名サーバーを経由するため、Braveは通話と利用者のIPアドレスとの関連を確立することはありません。 レオのプレミアム版を選択した利用者には、登録時にリンクできないトークンが発行され、購読の検証プロセスが保護されます。これにより、Braveは利用活動とユーザーの購入情報をリンクすることができず、完全なプライバシーが確保されます。さらに、利用者のEメールは購読の検証にのみ使用され、追跡されることはありません。 今後、Braveはプレミアム版に追加のモデルを導入する予定です。ネットワークの速度制限、対話の品質、購読者向けの独占特典なども改善されます。 現在は、Brave 1.6のデスクトップ版で利用できるレオとレオプレミアムは、今後数ヶ月でAndroidとiOSプラットフォームにも展開されます。この革新的な開発は、ブラウザ技術とAI統合の重要な進歩を示し、Braveの利用者志向およびプライバシー重視のイノベーションに対する取り組みを再確認します。 The post Braveがレオを紹介:ウェブページやビデオのリアルタイム要約など、さまざまなタスクをサポートする人工知能アシスタント appeared first on MarkTechPost。
リフレックスを使って、純粋なPythonでChatGPTに似たWebアプリを作成する
OpenAIのAPIを使用して、一行のデプロイメントで純粋なPythonでChatGPT風のWebアプリを構築する方法
このAIニュースレターはあなたが必要なすべてです #72
今週、AIニュースはOpenAIのDevdayと多くの新しいモデルや機能の発売で主導権を握り、それによってエロン・マスクがLLMレースに初参入したxAIのGrok GPT-3クラスモデルはかき消されてしまった...
夢と現実の間:生成テキストと幻覚
「これはLLMにおける幻覚の探求ですChatGPT、Bard、Claudeなどの最新のAI生成モデルが投げかける幻影をご覧ください」
データロボットとAWS Hackathon 2023でGenAI CVスクリーナーを構築する
この記事は、DataRobot&AWS Hackathon 2023で第3位を獲得した音声AI履歴書スクリーナーの解決策について述べていますソリューションの設計には、DataRobotとAWS Bedrockが必要です...
教育と学習の経験を向上させるために、生成的AIアプリケーションを開発する
最近、教師や機関は人工知能(AI)をカリキュラムに組み込むためのさまざまな方法を模索しています機械学習(ML)の教え方やレッスンプランの作成、採点、その他の教育アプリケーションへの組み込みなどです特に、生成型のAIモデル、特に大規模言語モデル(LLM)は、教育におけるAIの影響を劇的に高めました生成[...]
「小規模言語モデルにおける意図の調整の解除:Zephyr-7Bの突破を目指した、蒸留された教師あり微調整とAIフィードバックの包括的ガイド」
ZEPHYR-7Bは、AIフィードバック(AIF)データを使用した蒸留直接好み最適化(dDPO)を通じてユーザーの意図整合性に最適化された、小型の言語モデルです。この手法は、人間の注釈なしで意図の整列を効果的に向上させ、7Bパラメータモデルのトップパフォーマンスを実現します。この手法はAIFからの好みデータに依存し、トレーニング時間を最小限に抑え、ファインチューニング中の追加サンプリングは必要ありません。これにより、新たな最先端を樹立しています。 研究者は、ChatGPTなどのLLMの普及と、その派生モデルであるLLaMA、MPT、RedPajama-INCITE、Falcon、Llama 2に取り組んでいます。ファインチューニング、コンテキスト、検索補完生成、および量子化の進歩が強調されています。より小さいモデルのパフォーマンスを向上させるための蒸留技術、モデル評価のツールとベンチマークも議論されています。この研究では、ZEPHYR-7BのパフォーマンスをMTBench、AlpacaEval、HuggingFace Open LLM Leaderboardで評価しています。 この研究では、精度とユーザーの意図の整列を向上させるために、蒸留教師付きファインチューニング(dSFT)を使用した、より小型のオープンLLMの強化方法について検討しています。それは、人間の注釈なしでLLMを整列させるためにdDPOを導入し、教師モデルからのAIFに頼っています。研究者は、dSFT、AIFデータ、およびdDPOを介したMistral-7Bの整列版であるZEPHYR-7Bを紹介し、人間のフィードバックに整列した70Bパラメーターのチャットモデルと同等のパフォーマンスを示しています。この研究は、LLM開発における意図の整列の重要性を強調しています。 この手法では、モデルを高品質のデータでトレーニングするためにdSFTを組み合わせ、応答の好みを最適化するためにdDPOを利用して言語モデルを強化する方法が提案されています。教師モデルからのAIFを使用してユーザーの意図との整列性を改善します。このプロセスでは反復的なセルフプロンプティングを使用してトレーニングデータセットを生成します。その結果得られたZEPHYR-7Bモデルは、dSFT、AIFデータ、およびdDPOを介して達成され、改善された意図の整列性を持つ最先端のチャットモデルを表しています。 7BパラメータモデルであるZEPHYR-7Bは、オープンアクセスのRLHFベースモデルであるLLAMA2-CHAT-70Bを超えて、チャットのベンチマークで新たな最先端を確立しています。AlpacaEvalではGPT-3.5-TURBOとCLAUDE 2と競り合っていますが、数学やコーディングのタスクでは遅れています。7Bモデルの中で、dDPOモデルは優れており、dSFTとXwin-LM dPPOを上回っています。ただし、より大きなモデルは知識集約型のタスクでZEPHYRを上回っています。Open LLM Leaderboardでの評価では、ZEPHYRの多クラス分類タスクにおける強さが示され、ファインチューニング後の思考力と真実性の能力が確認されています。 ZEPHYR-7Bは、意図の整列性を高めるために直接好み最適化を採用しています。この研究は、評価者としてGPT-4を使用する際の潜在的なバイアスを強調し、ユーザーの意図との整列性に対するより小さいオープンモデルの能力を探求することを推奨しています。有害な出力や違法な助言などの安全性に関する考慮事項の欠落について指摘し、この重要な領域における今後の研究の必要性を示しています。 この研究では、将来の研究のいくつかの展望が明らかにされています。有害な出力や違法なアドバイスに対する安全性の考慮事項は、まだ探求されていません。より大きな教師モデルが学生モデルのパフォーマンス向上にどのような影響を与えるかを調査することが提案されています。蒸留における合成データの使用は困難ですが、価値ある研究領域として認識されています。ユーザーの意図に合わせるためのより小さいオープンモデルとその能力のさらなる探求は、可能な進歩を目指しており、広範なベンチマークとタスクでZEPHYR-7Bの能力を包括的に評価することが推奨されています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.