Learn more about Search Results Azure - Page 7
- You may be interested
- 「データの民主化は過大評価されているの...
- Amazon SageMakerを使用して、Hugging Fac...
- Snowflakeにおけるクエリ性能の向上と関連...
- トゥギャザーエーアイは、トレーニング用...
- 「AI for All 新しい民主化された知能の時...
- 2023年に使用するための10の最高のAI画像...
- head()とtail()関数の説明と例、コード
- 「Rにおけるエラーバーを伴ったグループ化...
- 新しいNVIDIA GPUベースのAmazon EC2イン...
- AIがセキュリティを向上させる方法
- Hugging Face Transformers と Amazon Sag...
- 「{dplyr}を使用したRにおけるデータ操作...
- 米政府機関がグローバルサイバー攻撃を受ける
- 私の記事を読むと、あなた方は私がどれだ...
- 「LlamaIndex vs LangChain 比較分析」
マイクロソフトの研究者がConfidential Consortium Framework (CCF)を紹介:セキュアな状態を持つCIAアプリケーションを開発するための汎用AIフレームワーク
「CIA Trinity(CIAトリニティ)」は、よく知られた情報セキュリティフレームワークであり、データの機密性、整合性の保護、高い可用性の3つの属性で構成されています。各属性から始めて、研究チームは信頼性の高い多者参加アプリケーションを信頼できないインフラストラクチャ上で実行することに焦点を当てています。個人データのプライバシーを保護する責任は組織にあります。この責務は法律によってますます規制されるようになり、実施しない場合の影響は、たとえばGDPRの場合には売上高の4%になる可能性があります。企業は知的財産を保護したり、競争力を獲得したり、秘密を守る必要がある場合でも、データを秘密に保つことを望む場合があります。 実行中の秘密はより難しいですが、静止状態と飛行中の暗号化は試された方法です。さらに、秘密は単独では部分的にしか解決されません。むしろ、任意のデータを保護する問題をキーの保護にまで縮小し、そのキーは一連の確立されたガイドラインに従って制御、保管、発行される必要があります。これは整合性の保護です。組織は、自らの管理下のデータを違法または偶発的な変更から保護し、データの機密性を維持するという二重の責任を負います。データにアクセスするコードの整合性の維持は、データの秘密を維持するために頻繁に必要とされます。コードの整合性と透明性を組み合わせることで、データを共有するパーティーは情報の意図した使用方法に合意することができます。 たとえば、銀行は政府のために要求を処理することで反マネーロンダリング法に従うことができますが、顧客の完全な情報は提供しません。クラウドコンピューティングの広範な普及により、アプリケーションに低い参入障壁とコストの比例的な拡張性を提供するため、これらのシステムの信頼できる計算基盤(TCB)は時間の経過とともに拡大しています。信頼できないクラウドインフラストラクチャを使用する場合、リモートでデータの整合性と機密性を確保することはより困難です。そのため、健康、金融、または政府に関連するような非常に敏感なアプリケーションは、パブリッククラウドに移行することができません。 この困難な状況を考慮すると、次の研究課題にはまだ回答が必要です:クラウドプロバイダを多者参加アプリケーションのTCBから排除しつつ、開発者がクラウドの計算とストレージリソースを活用できるようにすることは可能でしょうか?多者参加シナリオの需要が増える中で、互いに完全に信頼しないパーティー間でデータシステムを統合することは特に重要です。多くのソースからのデータを統合し、それを協力して利用して価値を向上させ、新しいユースケースを作成することができます。ただし、機密性と整合性には制約があり、研究チームは複数の異なる参加者のニーズとアクセス権限を考慮する必要があります。 現代のデジタルインフラストラクチャがますます重要になっているため、アプリケーションは信頼性があり、高い可用性が求められます。デジタルインフラストラクチャは、必要な一貫性とコストトレードオフであっても、100%の利用可能性を保証することはできませんので、通常の運用中に予想される障害に対して堅牢である必要があります。研究チームは、非常に実用的でありながら倫理的に優れたアプローチを取る必要があります。これには、信頼できないクラウドインフラストラクチャや多者参加の信頼できないガバナンスなど、様々な状態保持アプリケーションや現代の展開シナリオをサポートするCIAアプリケーションの作成が含まれます。 マイクロソフト、KU Leuven、ケンブリッジ大学の研究チームは、この研究のConfidential Consortium Framework(CCF)を提案しています。CCFは、分散トラストと集中クラウドコンピューティングを統合しています。リモートで証明可能な機密性と整合性により、CCFはクラウドベースの信頼性の高い実行環境を利用しています。さらに、トランザクションキーバリューストアとステートマシンレプリケーションは、高い可用性と監査を実現するために不変の台帳と組み合わせられています。CCFの柔軟性により、開発者は高度に調整可能な監視のために独自の多者参加ガバナンスアーキテクチャを使用し、アプリケーションロジックを適用することができます。 クラウドコンピューティングや多者参加協力において、この研究チームはデータの機密性、整合性の保護、高い可用性などを探求する多くの研究チームの1つです。CCFは、多くの先行システムとは異なり、孤立した安全な実行ソリューション(代わりに二次的なストレージシステムに依存)または孤立したデータストレージソリューション(台帳、データベース、またはキーバリューストアの形式)のいずれかを提供するのではなく、実行とストレージの両方を可能にするエンドツーエンドのソリューションを提供します。CCFは、信頼できる計算基盤、柔軟性のあるプログラミングアプローチ、セキュリティと使いやすさのバランスを備えています。さらに、CCFは、スナップショット、ライブコード更新、再構成、災害復旧、インデックスなどの機能に依存するAzure Managed CCFやAzure Confidential Ledgerなどのサービスを通じて本番環境で信頼されています。これは、汎用で自己完結型の設計の重要性を強調しています。
「人工的な汎用知能(Artificial General Intelligence; AGI)の探求:AIが超人力を達成したとき」
人工知能の分野は過去10年間で大きな進歩を遂げていますが、人間レベルの知能を達成することは多くの研究者の究極の目標ですこの記事では、私は...
開発者の生産性向上:DeloitteのAmazon SageMaker Canvasを用いたノーコード/ローコード機械学習の活用方法
今日のデータ駆動型の世界では、機械学習(ML)モデルを素早く構築し展開する能力がますます重要になっていますしかし、MLモデルの構築には時間と労力、特殊な専門知識が必要ですデータの収集やクリーニングから特徴エンジニアリング、モデルの構築、調整、展開まで、MLプロジェクトは開発者にとって数か月かかることがよくありますそして経験豊富なデータ[...]
データサイエンスプロジェクトにおけるGitHubのトップ5の代替案
「このブログでは、GitHubが提供する以上の大規模データセット、モデル、ワークフロー、およびコラボレーションの専門的な機能を持つデータサイエンティスト向けに設計された5つのプラットフォームについて議論しています」
GPUマシンの構築 vs GPUクラウドの利用
この記事では、コスト、パフォーマンス、運用、スケーラビリティなどの要素を分析し、深層学習や人工知能を用いたプロジェクトにおいて、オンプレミスのGPUマシンを構築することと、GPUクラウドサービスを使用することの利点とデメリットを検証しています
MLOps(エムエルオプス)とは何ですか?
“`html 機械学習オペレーション(MLOps)は、機械学習(ML)の開発とデプロイメントを結びつけることにより、生産環境での高性能モデルの継続的なデリバリーを標準化し効率化するための一連のプロセスです。 MLモデルの作成と改善をML開発と呼びます。機械学習モデルのデプロイメントは、それらを実稼働環境で使用可能にすることです。 MLモデルを開発から実稼働環境に移動させるために必要なプロセスを自動化することで、MLOpsは開発とデプロイメントの間のギャップを埋めます。これにより、MLモデルの迅速かつ効果的なデプロイメント、および産業環境での持続的な成功が支援されます。 MLOpsの利点は何ですか? MLOpsの価値は、企業が以下のことが可能になることです: MLOpsは、MLモデルを開発から実稼働環境に迅速にデプロイするためのプロセスを合理化し、デプロイメントを迅速化します。これにより、組織に利点をもたらすMLモデルの迅速なデプロイメントが実現されます。 MLOpsは、MLモデルをトレーニング環境と一致する実稼働環境にデプロイして、機械学習(ML)モデルの品質を向上させます。これにより、モデルが時間の経過とともに精度を失う、基本的なデータ分布が変化することのリスクを軽減します。 MLOpsは、実稼働環境でのMLモデルの管理と監視のプロセスを自動化することで、MLオペレーションの高コストを削減します。従業員は新しいMLモデルの作成など、他のプロジェクトに時間を費やすことができます。 MLOpsは具体的にどのように機能しますか? MLOpsを実装するためには、通常、継続的な統合とデリバリー(CI/CD)パイプラインが使用されます。ソフトウェアアプリケーションのビルド、テスト、リリースなどのプロセスは、CI/CDパイプラインの助けを借りて自動化することができます。 MLOps用のCI/CDパイプラインの典型的な手順の例は次のとおりです: 過去に収集されたデータを使用して、MLモデルをトレーニングします。 ホールドアウトデータセットと比較することで、MLモデルをテストします。 MLモデルを実稼働環境にデプロイメントします。 MLモデルを監視し、実稼働環境での性能を確認します。 CI/CDワークフローは手動または自動で開始することができます。たとえば、機械学習モデルの新バージョンが学習された場合にパイプラインがアクティブ化されることがあります。 MLOpsに使用されるツールは何ですか? MLOpsで使用できるさまざまな有用なツールがあります。一般的なツールには次のものがあります: トレーニングやMLモデルのデプロイメントに使用される一連のツールは、MLフレームワークとして知られています。MLフレームワークの中でも特によく使用されるのは、TensorFlow、PyTorch、scikit-learnです。 クラウドコンピューティングプラットフォームは、実稼働環境でのMLモデルのインストールと管理に必要なインフラストラクチャとサービスを提供します。代表的なクラウドコンピューティングプラットフォームには、Amazon Web Services(AWS)、Google Cloud…
「Bingチャットは、最新のリアルタイムな知識を提供する点でChatGPTを上回るのか? 検索補完強化ジェネレーション(RAG)によるご紹介」
近年、大規模言語モデル(LLM)の開発により、人工知能(AI)と機械学習の分野において革新的な変化がもたらされました。これらのモデルは大衆やAIコミュニティから重要な注目を集め、自然言語処理、生成、理解において驚異的な進歩を遂げています。よく知られたChatGPTというLLMの最良の例は、OpenAIのGPTアーキテクチャに基づいており、人間がAIパワードの技術と対話する方法を変えました。 LLMは、テキスト生成、質問応答、テキスト要約、言語翻訳などのタスクにおいて優れた能力を示していますが、それでも独自の欠点があります。これらのモデルは、時に正確でない情報や時代遅れの情報として出力することがあります。さらに、適切なソースの引用がない場合、LLMによって生成された出力の信頼性を検証することが困難になることがあります。 Retrieval Augmented Generation(RAG)とは何ですか? Retrieval Augmented Generation(RAG)という手法は、上記の制限に対処しています。RAGは、外部知識ベースから事実を収集し、大規模言語モデルが正確かつ最新の情報にアクセスできるようにする人工知能ベースのフレームワークです。 外部知識の取り込みにより、RAGはLLMを変革することができました。RAGは従来のLLMの制限を解消し、外部検索と生成手法をスムーズに組み合わせることにより、より信頼性のある、文脈に敏感な、知識のあるAIによるコミュニケーション環境を保証します。 RAGの利点 応答の品質向上 – Retrieval Augmented Generationは、不一致のあるLLM生成の応答問題に焦点を当て、より正確で信頼性のあるデータを保証します。 最新の情報の取得 – RAGは外部情報を内部表現に統合することで、LLMが最新かつ信頼性のある事実にアクセスできるようにします。これにより、回答が最新の知識に基づいており、モデルの正確性と関連性が向上します。 透明性 – RAGの実装により、ユーザーはLLMベースのQ&Aシステムにおけるモデルのソースを取得できます。ユーザーに文の整合性を検証する機能を提供することで、LLMは透明性を促進し、提供するデータへの信頼性を高めます。 情報の欠落と幻覚の減少 – RAGは、LLMを独立かつ検証可能な事実に基づいて構築することにより、モデルが機密情報を漏洩したり、誤った結果を生成する可能性を低減します。より信頼性のある外部知識ベースに依存することで、LLMが情報を誤解する可能性を減らします。…
「Amazon Qをご紹介します:ビジネスの卓越性のためのチャットボットをご紹介します!」
今日の速いビジネスの世界では、効果的なコミュニケーションが成功の鍵となります。AmazonはAmazon Qを導入し、データとのやり取りを容易にするために設計されたAIチャットボットです。この記事では、Amazon Qの特徴、利点、そしてビジネスコミュニケーションへの影響について探っていきます。 Amazon Qの力 Amazon QはAmazon Web Services(AWS)が開発したAIチャットボットです。自然言語処理と機械学習の力を活用して、ユーザーの質問に対して会話形式で理解し、応答することができます。Amazon Qを使用することで、企業は顧客と自動化された対話を行い、瞬時のサポートを提供し、顧客の会話から貴重な洞察を得ることができます。 主な特徴と機能 Amazon Qは、ビジネスコミュニケーションの世界において画期的な変革をもたらす幅広い機能を提供しています。まず第一に、ビジネスは特定のニーズに合わせてカスタマイズしたチャットボットを作成することができます。これらのチャットボットは、SlackやMicrosoft Teamsなどさまざまなメッセージングプラットフォームと統合することができ、ビジネスは顧客に好まれるチャネルでのアプローチが容易になります。 Amazon Qの特筆すべき特徴の一つは、複雑な質問を理解し、正確な回答を提供する能力です。チャットボットは高度な自然言語理解アルゴリズムを使用してユーザーの意図を理解し、会話から関連する情報を抽出します。これにより、ビジネスはパーソナライズされたコンテキストに即した回答を提供することができ、顧客体験を向上させることができます。 さらに、Amazon Qは会社のデータを使用して特定のアクションを実行するためにトレーニングすることができます。例えば、顧客がチャットボットに会議のスケジュールを依頼したり、注文をするように依頼した場合、適切な設定を行えばAmazon Qはこれらのアクションを円滑に実行し、顧客とビジネスの両方に時間と努力を節約することができます。 また読む: Amazon vs. Alibaba: 会話型AIの巨人たちの戦い 企業への利益…
NVIDIAのGPUはAWS上でOmniverse Isaac Simにおいて2倍のシミュレーションの進化を提供し、スマートなロボットの加速を実現します
クラウド上でよりインテリジェントなロボットを開発することが、スピードの倍増をもたらします。 NVIDIA Isaac SimとNVIDIA L40S GPUsがAmazon Web Servicesに導入され、開発者はクラウド上で加速されたロボットアプリケーションを構築および展開することができます。 AI対応ロボット用の拡張可能なシミュレータであるIsaac Simは、NVIDIA Omniverse開発プラットフォーム上に構築され、OpenUSDアプリケーションの構築と接続を可能にします。 AIコンピューティングの強力さとグラフィックスおよびメディアの高速化を組み合わせると、L40S GPUは次世代のデータセンターワークロードのパワーになります。 Ada Lovelaceアーキテクチャに基づいたL40Sは、過去の世代と比較してOmniverseに対して最大3.8倍の性能向上をもたらし、エンジニアリングおよびロボティクスチームの性能を向上させます。 加速による世代間の飛躍により、Isaac Simを使用した幅広いロボットシミュレーションタスクにおいて、L40S GPUはA40 GPUと比較して2倍の高速パフォーマンスを実現します。 L40S GPUは、言語モデルの微調整から画像へのテキスト変換やチャットアプリケーションへのリアルタイム推論など、生成的AIのワークロードでも活用することができます。 NVIDIA L40Sの新しいAmazon Machine…
「NVIDIA BioNeMoがAWS上での薬剤探索のための生成型AIを可能にする」
主要な製薬会社やテクバイオ企業の研究者や開発者は、Amazon Web Servicesを通じてNVIDIA Claraソフトウェアとサービスを簡単に展開できるようになりました。詳細はこちらをご覧ください。 本日のAWS re:Inventで発表されたこの取り組みにより、AWSクラウドリソースを使用しているヘルスケアおよびライフサイエンスの開発者は、NVIDIAの加速オファリングを柔軟に統合することができるようになります。これにはNVIDIA BioNeMo(創成AIプラットフォーム)も含まれており、AWS上のNVIDIA DGX Cloudに追加され、高性能コンピューティングのためのAWS ParallelClusterクラスタ管理ツールとAmazon SageMakerマシンラーニングサービスを介して現在利用可能です。 北薬やライフサイエンス企業の数千社がAWSを利用しています。彼らは今やBioNeMoにアクセスして、専有データを使用してデジタル生物学の基礎モデルを構築またはカスタマイズし、NVIDIA GPUアクセラレートクラウドサーバーを使用してモデルのトレーニングとデプロイをスケールアップすることが可能です。 Alchemab Therapeutics、Basecamp Research、Character Biosciences、Evozyne、Etcembly、LabGeniusなどのテクバイオイノベーターは、既にBioNeMoを使用して創成AIによる医薬品の探索と開発を行っています。このコラボレーションにより、彼らはバイオモレキュラーデータ上でトレーニングされた創成AIモデルを開発するためにクラウドコンピューティングリソースを迅速にスケールアップするためのより多くの方法を得ることができます。 この発表により、NVIDIAの既存のヘルスケアに特化したオファリングがAWS上で利用可能になります。それには、医療画像処理のためのNVIDIA MONAIおよびジェノミクスの加速のためのNVIDIA Parabricksも含まれています。 AWSでの新機能:NVIDIA BioNeMoが創成AIを推進する BioNeMoは、デジタル生物学のためのドメイン固有のフレームワークであり、事前学習済みの大規模言語モデル(LLM)、データローダー、最適化されたトレーニングレシピを含んでいます。これにより、ターゲットの同定、タンパク質構造の予測、薬剤候補のスクリーニングを加速することで、コンピュータ支援の薬剤探索を推進することができます。 薬剤探索チームは、BioNeMoを使用して専有データを活用し、クラウドベースの高性能コンピューティングクラスター上でモデルを構築または最適化することができます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.