Learn more about Search Results AWS Lambda - Page 7

「すべてのビジネスが生成的AIを受け入れるのを支援するための新しいツールを発表します」と発表します

スタートアップから大企業まで、あらゆる規模の組織がジェネレーティブAIに取り組み始めています彼らはジェネレーティブAIを活用し、ベータ版、プロトタイプ、デモから実際の生産性向上と革新に繋げたいと考えていますしかし、組織がジェネレーティブAIをエンタープライズに導入し、実践するためには何が必要なのでしょうか?話題になるのは[…]

「ファウンデーションモデルの安全で準拠した利用を可能にする生成AIゲートウェイを作成する」

AIや機械学習(ML)の急速に進化する世界では、Foundation Models(FM)は革新を推進し、新たなユースケースを解き放つための大きな可能性を示していますしかし、組織がますますFMのパワーを利用するにつれて、データプライバシーやセキュリティ、追加費用、コンプライアンスに関する懸念が最重要視されるようになりました金融サービスなどの規制とコンプライアンスに特化した業界では、・・・

エッジ上でのビジュアル品質検査のためのエンドツーエンドのMLOpsパイプラインの構築-パート1

「機械学習(ML)モデルの成功した導入は、エンドツーエンドのMLパイプラインに大きく依存していますこのようなパイプラインの開発は困難な場合もありますが、エッジMLユースケースを扱う場合はさらに複雑になりますエッジでの機械学習は、実行可能性をもたらす概念です...」

MDauditは、AIを使用して医療関係者の収益結果を改善することを目指しています

MDauditは、7万以上の医療提供者と1,500以上の医療施設にクラウドベースの請求のコンプライアンスと収益の正確性を保証するソフトウェアサービス(SaaS)プラットフォームを提供しています健康関連のお客様が規制のコンプライアンスを保持し、収益を維持できるようにしていますトップ60以上の米国の医療ネットワークとの取り組みを行っているMDauditは、人工知能(AI)の能力を拡張する必要があります...

「包括的な革新:Amazon SageMakerでのHack.The.Bias」

この投稿は、ETH ZürichのAWS学生ハッカソンチームのメンバーであるDaniele Chiappalupiと共同で執筆されましたAmazon SageMaker JumpStartを使用して、誰でも簡単に機械学習(ML)を始めることができますこの投稿では、大学のハッカソンチームがSageMaker JumpStartを使用して、ユーザーが識別して削除するのを支援するアプリケーションを迅速に構築した方法を紹介します

「トップ20のデータエンジニアリングプロジェクトアイデア[ソースコード付き]」

データエンジニアリングは、分析、レポート、および機械学習に必要なデータを収集、変換、配信することによって、広範なデータエコシステムにおいて重要な役割を果たします。データエンジニアを目指す人々は、実際のプロジェクトを通じて実践的な経験を積み、自分の専門知識をアピールするための機会を求めることが多いです。この記事では、ソースコード付きのトップ20のデータエンジニアリングプロジェクトアイデアを紹介します。初心者、中級のエンジニア、または上級のプラクティショナーであっても、これらのプロジェクトはデータエンジニアリングスキルを磨く絶好の機会を提供します。 初心者向けデータエンジニアリングプロジェクト 1. スマートIoTインフラストラクチャ 目標 このプロジェクトの主な目標は、IoT(モノのインターネット)デバイスからのデータを収集し、分析するための信頼性のあるデータパイプラインを構築することです。ウェブカム、温度センサー、モーションディテクターなど、さまざまなIoTデバイスは、多くのデータを生成します。このデータを効果的に消費、保存、処理、分析するためのシステムを設計することを目指します。これにより、IoTデータからの学習に基づいたリアルタイムのモニタリングや意思決定が可能になります。 解決方法 Apache KafkaやMQTTのような技術を利用して、IoTデバイスからの効率的なデータ取り込みを行います。これらの技術は高スループットのデータストリームをサポートします。 Apache CassandraやMongoDBのようなスケーラブルなデータベースを使用して、受信したIoTデータを保存します。これらのNoSQLデータベースは、IoTデータのボリュームとバラエティを処理できます。 Apache Spark StreamingやApache Flinkを使用してリアルタイムデータ処理を実装します。これらのフレームワークを使用すると、データが到着すると同時にデータを分析して変換することができるため、リアルタイムモニタリングに適しています。 GrafanaやKibanaなどの可視化ツールを使用して、IoTデータに対する洞察を提供するダッシュボードを作成します。リアルタイムの可視化は、ステークホルダーが情報を基にした意思決定を行うのに役立ちます。 ソースコードを確認するには、ここをクリックしてください 2. 航空データ分析 目標 連邦航空局(FAA)、航空会社、空港など、さまざまな情報源から航空データを収集、処理、分析するために、このプロジェクトではデータパイプラインを開発しようとします。航空データには、フライト、空港、天候、乗客の人口統計などが含まれます。このデータから意味のある洞察を抽出し、フライトスケジュールの改善、安全対策の強化、航空産業のさまざまな側面の最適化を図ります。 解決方法 Apache NifiやAWS…

「Retrieval Augmented GenerationとLangChain Agentsを使用して、内部情報へのアクセスを簡素化する」

この投稿では、顧客が内部文書を検索する際に直面する最も一般的な課題について説明し、AWSサービスを使用して内部情報をより有用にするための生成型AI対話ボットを作成するための具体的なガイダンスを提供します組織内に存在するデータのうち、非構造化データが全体の80%を占めています[...]

「Amazon Comprehendのカスタム分類を使用して分類パイプラインを構築する(パートI)」

このマルチシリーズのブログ投稿の最初のパートでは、スケーラブルなトレーニングパイプラインの作成方法と、Comprehendカスタム分類モデルのためのトレーニングデータの準備方法について学びます数回のクリックでAWSアカウントにデプロイできるカスタム分類トレーニングパイプラインを紹介します

「Hugging Faceを使用してAmazon SageMakerでのメール分類により、クライアントの成功管理を加速する」

この記事では、SageMakerがScalableのデータサイエンスチームが効率的にデータサイエンスプロジェクトのライフサイクルを管理するのをどのようにサポートしているか、具体的にはメール分類プロジェクトについて共有しますライフサイクルは、SageMaker Studioによるデータ分析と探索の初期フェーズで始まり、SageMakerトレーニング、推論、およびHugging Face DLCを使用したモデルの実験と展開に移行し、他のAWSサービスと統合されたSageMakerパイプラインによるトレーニングパイプラインで完了します

言語の壁を乗り越える シームレスなサポートのためにAmazon Translateでアプリケーションログを翻訳する

この投稿では、アプリケーションログが英語以外の言語で表示される場合に、開発者やサポートチームがデバッグやサポートを行う際に直面する課題について取り上げます提案される解決策は、CloudWatchの非英語ログを自動的にAmazon Translateを使用して翻訳し、解決策を環境に展開するためのステップバイステップのガイダンスを提供します

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us