Learn more about Search Results AI workflow - Page 7

NVIDIAのGPUはAWS上でOmniverse Isaac Simにおいて2倍のシミュレーションの進化を提供し、スマートなロボットの加速を実現します

クラウド上でよりインテリジェントなロボットを開発することが、スピードの倍増をもたらします。 NVIDIA Isaac SimとNVIDIA L40S GPUsがAmazon Web Servicesに導入され、開発者はクラウド上で加速されたロボットアプリケーションを構築および展開することができます。 AI対応ロボット用の拡張可能なシミュレータであるIsaac Simは、NVIDIA Omniverse開発プラットフォーム上に構築され、OpenUSDアプリケーションの構築と接続を可能にします。 AIコンピューティングの強力さとグラフィックスおよびメディアの高速化を組み合わせると、L40S GPUは次世代のデータセンターワークロードのパワーになります。 Ada Lovelaceアーキテクチャに基づいたL40Sは、過去の世代と比較してOmniverseに対して最大3.8倍の性能向上をもたらし、エンジニアリングおよびロボティクスチームの性能を向上させます。 加速による世代間の飛躍により、Isaac Simを使用した幅広いロボットシミュレーションタスクにおいて、L40S GPUはA40 GPUと比較して2倍の高速パフォーマンスを実現します。 L40S GPUは、言語モデルの微調整から画像へのテキスト変換やチャットアプリケーションへのリアルタイム推論など、生成的AIのワークロードでも活用することができます。 NVIDIA L40Sの新しいAmazon Machine…

「Pythonを用いた巡回セールスマン問題の実装、解決、および可視化」

この記事は、スプリント2で終了したところから旅を続けますここでは、前の記事で提案した数学モデルを取り上げ、Pyomoを使用してPythonで実装します

カスタムレンズを使用して、優れたアーキテクチャのIDPソリューションを構築する – パート5:コスト最適化

クラウド上の本番用ソリューションを構築するには、リソース、時間、顧客の期待、ビジネスの成果との間でトレードオフが必要ですAWS Well-Architectedフレームワークは、AWS上でワークロードを構築する際に行う意思決定の利点とリスクを理解するのに役立ちますインテリジェントドキュメントプロセシング(IDP)プロジェクトでは、通常、光学文字認識(OCR)と自然言語処理を組み合わせます

自分自身のレンズでウェルアーキテクチャなIDPソリューションを構築する – パート6:持続可能性

「インテリジェント文書処理(IDP)プロジェクトでは、光学式文字認識(OCR)と自然言語処理(NLP)を組み合わせて、文書を自動的に読み取り理解することが一般的です顧客はあらゆる業界でIDPワークロードをAWS上で実行し、KYCフォーム、税務書類、請求書、保険請求書、配送報告書、在庫報告書などのユースケースを自動化することでビジネス価値を提供しています[...]」

「カスタムレンズを使用して、信頼性のあるよく設計されたIDPソリューションを構築する」シリーズの第3部:信頼性

IDPウェルアーキテクチャのカスタムレンズは、AWSを使用してインテリジェントドキュメント処理(IDP)ソリューションを実行しているすべてのAWSのお客様を対象としており、AWS上で安全で効率的かつ信頼性のあるIDPソリューションを構築する方法に関するガイダンスを探していますクラウドでの本番対応のソリューションを構築するには、リソース、時間、顧客の間で一連のトレードオフが必要です

『React開発の向上:ChatGPTの力を解き放つReact開発者』

この包括的な探求では、ChatGPTがReactの開発者に力を与える数多くの使用例を掘り下げ、貴重な洞察を提供します

「LeNetのマスタリング:アーキテクチャの洞察と実践的な実装」

はじめに LeNet-5は、1990年代にYann LeCunと彼のチームによって開発された画期的な畳み込みニューラルネットワーク(CNN)であり、コンピュータビジョンとディープラーニングにおいて画期的な存在となりました。この画期的なアーキテクチャは、手書きおよび機械印刷の文字認識を革新するために明示的に作成されました。従来の手法とは異なり、LeNet-5は手動の特徴量エンジニアリングの必要性を排除し、畳み込み層、サンプリング、完全接続層を介してピクセル画像を直接処理する革新的なアプローチを導入しました。その成功は文字認識を超え、現代のディープラーニングモデルの基盤として機能し、コンピュータビジョン、物体認識、画像分類の後続のアーキテクチャに影響を与えました。 Yann LeCunがバックプロパゲーションアルゴリズムを実用的な問題に適用したことがLeNet-5の基礎を築き、米国郵便公社が提供する郵便番号の識別において優れた成果を上げました。その後のバージョンや応用では、1日に何百万枚もの小切手を読み取る能力などが開発され、研究者の間での関心が高まり、ニューラルネットワークの風景を形作り、ディープラーニングの進化を刺激しました。 LeNet-5の成功とその後の応用、例えば1日に何百万枚もの小切手を読み取れるシステムなどは、研究者たちの間でニューラルネットワークへの普及に火をつけました。現在のトップパフォーマンスのニューラルネットワークアーキテクチャはLeNet-5を超えて進化していますが、その画期的な設計と成果は数多くの後続モデルの基盤となり、ディープラーニングの形成と進化の象徴となっています。LeNet-5はイノベーションの証しであり、機械学習と画像認識の進化の持続的なシンボルとなっています。 学習目標 LeNet-5の深層学習とコンピュータビジョンの進化における歴史的な意義と影響を探求する。 現代のニューラルネットワークアーキテクチャとLeNet-5を比較し、現在の深層学習モデルへの基本的な影響を調査する。 畳み込み層、サンプリング、完全接続層を含むLeNet-5のアーキテクチャを理解する。 LeNet-5の画像認識タスクにおける効果を示す実践的な応用と事例を分析する。 この記事はData Science Blogathonの一環として公開されました。 LeNetの理解 LeNet、またはLeNet-5は、1990年代にYann LeCunと彼のチームによって開発された画期的な畳み込みニューラルネットワーク(CNN)アーキテクチャであり、手書きおよび機械印刷の文字認識タスクに特化して設計されました。LeNet-5の重要性は、階層的な特徴学習の成功したデモンストレーションと文字認識における効果にあります。その影響は元の目的を超えており、現代のディープラーニングモデルの開発に影響を与え、コンピュータビジョン、画像認識、さまざまな機械学習アプリケーションの後続の進歩に基盤として機能しています。 LeNetのアーキテクチャ LeNet-5は、文字認識タスクにおいて使用される特定のアーキテクチャを持つ畳み込みニューラルネットワーク(CNN)です。入力層を除いた複数の層から構成され、学習可能なパラメータを持っています。特に32×32ピクセルの画像を処理し、そのデータベースの文字よりも大きな領域に重点を置いた、特徴的な特徴の抽出に焦点を当てています。入力ピクセル値は、学習効率を向上させるために正規化されます。 LeNetのアーキテクチャは、畳み込み層、サンプリング層、完全接続層を特定の接続パターンで組み合わせたものです。入力ピクセルの正規化とデータから特徴的な特徴を抽出するための一連の層を使用します。さらに、活性化関数の飽和を防ぐためのユニークな戦略を実装し、効率的なトレーニングのための特定の損失関数を使用します。 飽和を防ぐユニークな戦略 入力層: LeNetは32×32ピクセルの画像を処理し、データベースの文字よりも大きく、画像の中心に潜在的な特徴を捉えることを目指しています。 畳み込みおよびサブサンプリング層:…

「ビカス・アグラワルとともにデータサイエンスエコシステムを解読する」

オラクルアナリティクスクラウドのシニアプリンシパルデータサイエンティストであるドクターヴィカスアグラワル氏と共にAIの未来を探求しましょう。このLeading with Data sessionでは、彼がデータサイエンスにおける問題解決、MLops、そして生成AIが企業ソリューションに与える影響についての洞察を共有しています。このディスカッションでは、データサイエンスプロジェクトの実践的なアプローチから落とし穴まで、意欲的なデータサイエンティストを対象とした必須のアドバイスが提供されます。 ヴィカス・アグラワル氏との対話からのキーインサイト データサイエンスでは、問題の理解に集中することが重要であり、大部分の努力を占めます。 データサイエンスにおける成功したコンセプト実証(POC)は、技術的な側面だけでなく、解決策の実用性とスケーラビリティも考慮する必要があります。 AIの誇大広告によって引き起こされる高額な誤解を避けるために、顧客との明確なコミュニケーションと現実的な期待設定が不可欠です。 生成AIは、特にテキストとユーザーインターフェースに関連する領域で、企業ソリューションを革新する可能性を秘めています。 データサイエンスのキャリアを築くには、数学の堅固な基礎とアルゴリズムの深い理解が必要です。 企業環境では、AIの出力の信頼性や信頼性を確保するために、新たな検証技術が必要とされます。 AIツールが進化するにつれて、データサイエンティストはこれらのツールを操作するだけでなく、強化および改善するスキルが必要です。 私たちのコミュニティチャンネルで、AIとデータサイエンスの著名な専門家とのより多くの洞察に出会いましょう! データサイエンスにおいて技術的な深さとマクロ視点をどのようにバランスしますか? 日常の業務では、私は様々な優れた機関や企業からのメンターに多くを負っています。彼らは私に技術は目的ではなく手段であるという哲学を教え込んでくれました。重要なのは問題を理解するために多くの時間を費やすことであり、その努力の90%以上がそこに集中されます。残りは解決策を見つけることであり、これには他の人々が同様の問題にアプローチした方法や顧客の最終的なニーズを考慮することが多く含まれます。このアプローチは、テクノロジーをビジネスへとつなげるための基本となっています。 顧客の問題を解決するためのアプローチはどのようになっていますか? 解決に値する問題が特定されると、まず問題を解決するために必要なデータが利用可能かどうかを確認します。次に、問題を解決するための技術が合理的な時間枠内で存在するかどうかを評価します。将来の道筋を見出せる場合は、たとえそれが数年後であっても、プルーフオブコンセプト(POC)に進むことになります。このPOCは包括的であり、データパイプラインからエンドツーエンドの機能までをカバーしていますが、この段階ではスケーラビリティは主な問題ではありません。目標は、アルゴリズム、データソース、および目指すアウトプットの性質への明確なパスを持つことです。 最適化フェーズとMLオプスはどのように扱いますか? 成功したPOCの後、最適化フェーズに入ります。ここには作業の大部分があります。これには、モデルが異なるビジネスプロセスや地理に適応し、分布が外れた場合に修正できることを確認することが含まれます。また、モデルが効率的に再トレーニングでき、適切にスケーリングできることも重要です。このフェーズは重要であり、モデルが概念から実用的な展開可能なソリューションへと移行する場所です。 データサイエンスプロジェクトで最も一般的な落とし穴は何ですか? 最も高額なミスは、AIの誇大広告とコミュニケーションのミスによるものです。顧客との明確かつ相互の期待設定が重要です。しばしば、顧客はAIに関連する業界の話題により期待が高く、常に正しい答えを提供できるとは限らない最先端技術を理解していないことがあります。別の落とし穴は、問題を正しく定義しないことです。顧客の問題に直接対処しないか、あるいは「すべてをやり尽くす」ことを試みることによって問題を不適切に定義する場合があります。 ワークフローで生成AIとどのように対話しますか? 著作権やIPの汚染への懸念から、ほとんどの企業では生成AIは広く使用されていません。ただし、商業的に利用可能なオープンソースの素材を活用しています。生成AIは、テキスト要約、テキスト拡張、説明の提供などの領域で大きく進化しています。信頼性にはまだ課題があり、大規模な言語モデル(LLM)の出力をフィルタリングする技術を調査しており、それが企業で信頼性のあるものであることを確認しています。 ジェネレーティブAIが企業ソリューションに与える影響はどのようなものですか?…

ギットハブアクションズでのキャッシュ保存

この記事では、Github Actionsのキャッシュ方法について紹介しますGithub Actionsは、ワークフローを自動化するためのGithubのプラットフォームであり、CI/CD(継続的インテグレーション/...)によく使われています

「FP8を用いたPyTorchトレーニング作業の高速化」

過去数年間、AIの分野では革命的な進展が見られており、特に最近のChatGPTなどのLLMベースのアプリケーションの人気と普及を最もよく表していますこれらは...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us