Learn more about Search Results 5 - Page 7
- You may be interested
- すべての開発者が知るべき6つの生成AIフレ...
- 「50 ミッドジャーニーノーリングのヒント...
- 「13/11から19/11までの週の最も重要なコ...
- 『アポロ8が月レースを制した方法』
- Eleuther AI Research Groupが、Classifie...
- 将来のアプリケーションを支える大規模言...
- 「Web Speech API:何がうまく機能してい...
- 「シーケンシャルデータのディープラーニ...
- 「GPT4Readability — リードミーをもう一...
- 新しいAI研究がMONAI Generative Modelsを...
- メタAIは、IMAGEBINDを紹介します:明示的...
- データプライバシーを考える新しい方法
- 「モデルの解釈性のためのPFIに深く入り込...
- 「CNNにおけるアトラウス畳み込みの総合ガ...
- CPU上でBERT推論をスケーリングアップする...
「VoAGIニュース、11月15日 10の必須パンダ機能 • データサイエンスをマスターするための5つの無料コース」
今週のVoAGI:データサイエンティストにとって重要で便利な10のPandas関数をチェックしてみてください•今日から無料のプログラム、データ分析、機械学習の学習コースを利用してスキルアップしましょう•さらにたくさんの情報をお楽しみに!
「データサイエンスをマスターするための無料コース5選」
データサイエンスに参入したいですか?プログラミング、データ分析、機械学習を学ぶための無料コースで今すぐスキルアップしましょう
ロボットが4億5000万年前の絶滅した海洋生物を模倣
カーネギーメロン大学の研究者たちは、絶滅した生物の知見を利用してソフトロボットを作るための新たなアプローチを開発しました
「銀行を破産させずにビジネスでAIを導入するための5つのステップ」
人工知能は急速に発展し続けており、もし全ての産業に浸透し続ければ、私たちの生活のあり方を完全に変えることになるでしょうその結果、多くの起業家にとって、AIを自社に統合することが最優先の課題となりました個人でも自分の生活を向上させるためにAIを活用する方法を模索していますこの興奮は…
次回のデータサイエンスの課題への5ステップ設計図
「座って考えたことはありますか?データサイエンスの問題を解決するためにどのような手順を踏む必要があるかを」
ケンブリッジ大学の研究者が50,000枚の合成された写真リアルな足のイメージデータセットと新しいAIライブラリを紹介
健康、ファッション、フィットネス産業は、写真から人体の3Dモデルを復元する難しいコンピュータビジョンの課題に非常に興味があります。この研究では、人間の足の3Dモデルを再構築する問題に取り組んでいます。正確な足のモデルは、シューズの購入、オーソティクス、個人の健康管理に役立ちます。また、写真から3Dモデルを復元するアイデアは、これらのビジネスのデジタル市場が成長するにつれて非常に魅力的になっています。既存の足の再構築ソリューションには、4つのタイプがあります。高価なスキャニング装置、ノイズの多いポイントクラウドの再構築、デプスマップやTrueDepthカメラのような携帯電話ベースのセンサーを使用した再構築、Structure from Motion(SfM)に続くMulti-View Stereo(MVS)、絵の輪郭に生成的な足のモデルをフィットさせる方法です。 これらのオプションのいずれも、家庭で精密なスキャンを行うには十分ではありません。多くの人々が高価なスキャニング装置を手に入れることはできません。携帯電話ベースのセンサーは広く利用できず、使いやすくもありません。ノイズの多いポイントクラウドは、レンダリングや測定などの後続の活動に利用することが困難です。さらに、生成的な足のモデルは品質が低く制約があり、イメージからのシルエットのみを使用することにより、イメージから得られる幾何学的情報の量に制約があります。これは、少数のビューの状況において特に問題となります。SfMは、画像間の密な特徴のマッチングに多くの入力ビューを必要とし、MVSはノイズの多いポイントクラウドを生成することもあります。 また、足の3Dグラウンドトゥルースデータとのペア写真の不足も、これらの手法の性能を制約しています。このため、ケンブリッジ大学の研究者たちは、FOUND(Foot Optimisation using Uncertain Normals for Surface Deformation)と呼ばれるアルゴリズムを提案しています。このアルゴリズムは、ピクセルごとの表面法線の不確実性を利用して、従来のマルチビュー再構築手法を改善します。彼らの手法は、最小限の校正済みRGB写真の入力数を必要としますが、幾何学的情報がないシルエットのみを利用して、表面法線とキーポイントを補完的な手がかりとして使用します。また、このようなシグナルのデータの希少性を乗り越えるために、人工的に写真のリアルなラベルと対応付けた豊富なコレクションも提供します。 以下に、彼らの主な貢献を示します: • SynFootという大規模なシンセティックデータセットをリリースしました。このデータセットには、正確なシルエット、表面法線、キーポイントのラベルが付いた、5万枚のフォトリアルな足の写真が含まれます。このような情報を実際の写真で取得するには高価なスキャニング装置が必要ですが、彼らのデータセットは大規模なスケーラビリティを持っています。彼らは、8つの実際の足のスキャンのみを持っていながら、彼らのシンセティックデータセットが足の写真内の十分な変動を捉え、下流のタスクに対して実際の画像に一般化できることを示しています。また、474枚の14つの実際の足の写真と、高解像度の3Dスキャンとピクセル単位での表面法線のグラウンドトゥルースとの対応データセットも提供します。最後に、大規模なシンセティックデータセットの効果的な作成を可能にするBlenderのプロプライエタリPythonライブラリも公開します。 • 彼らは、不確実性を考慮した表面法線推定ネットワークが、8つの足のスキャンからのシンセティックデータのみを用いて、実際のフィールドでの足の写真に一般化できることを示しています。人工的な足の写真と実際の足の写真とのドメインの差を減らすために、彼らは積極的な外観と視点の拡張を使用しています。ネットワークは、各ピクセルで関連する不確実性と表面法線を計算します。不確実性をしきい値処理することで、別のネットワークを訓練する必要なく正確なシルエットを得ることができます。また、最適化スキームにおいて予測の正確性が不確実な場合に表面法線のロスに重みを付けるために、推定された不確実性を使用することで、ロバスト性を向上させることができます。 • 彼らは、ディファレンシャブルレンダリングを使用して生成的な足のモデルを校正済み写真のシリーズに適合させるための最適化戦略を提供します。彼らのパイプラインは、表面再構築のための最先端のフォトグラメトリよりも優れており、不確実性を考慮しており、ビューの数が限られている場合でも完全なメッシュを再構築することができます。また、ユーザーの携帯電話から得られたデータにも使用することができます。
「Phindの新しいAIモデルは、コーディングにおいてGPT-4よりも優れており、GPT-3.5のような速度と16kのコンテキストを持っています」
“`html コーディングや技術的な問題解決では、複雑な質問に対する回答を求める際に速さと正確さのトレードオフがあります。開発者はしばしば迅速かつ信頼性のあるサポートが必要とされます。 GPT-4は応答時間が比較的遅いことが問題でした。回答を得るための遅延は生産性を阻害することがあります。 Phindのv7モデルは、GPT-4のコーディング能力を超える優れた速さでこれを行います。応答時間が5倍になり、Phindモデルは前任者に関連する50秒の待ち時間がかかることに比べて、たった10秒で技術的な質問に対する高品質な回答を提供します。 Phindモデルは7世代目になり、CodeLlama-34B fine-tunesの基盤を活用して構築されています。これは、HumanEvalスコアでGPT-4を上回る最初のモデルです。この新しいモデルは、高品質のコードと推論問題の70兆トークンを使って洗練されました。人間評価スコアが74.7%という素晴らしい成績を収めつつも、実世界での助けに関しては、このような指標を超越することも重要です。包括的なフィードバック収集とユーザーの経験を通じて、Phindモデルは実用的なコーディングシナリオでGPT-4の効用を一貫して満たすか上回る能力を示しています。 Phindモデルの一つの特徴はその速さです。NVIDIAのH100sとTensorRT-LLMライブラリのパワーを活用することで、1秒あたりに印象的な100トークンを単一ストリームで処理し、必要なユーザーに素早くサポートを提供することができます。 さらに、Phindモデルは広範なコンテキストを提供し、回答に最大で16,000トークンをサポートします。現在、モデルはウェブサイト上で12,000トークンまでの入力を許可し、残りの4,000トークンはウェブベースの結果に予約されています。 Phindモデルは多くの利点を提供していますが、改善が必要な領域もあることを認識する価値があります。特に複雑な問題の処理において、一貫性が課題となる場合があります。これらのケースでは、GPT-4よりも正しい答えに到達するまでにより多くの世代が必要な場合があります。 まとめると、Phindモデルは効率的で信頼性のあるコーディングサポートの持続的な問題への有望な解決策です。優れたコーディング能力と素晴らしい速さ、幅広いコンテキストサポートを組み合わせることで、ユーザーへの実世界の助けを提供する効果を持っています。このモデルが進化し続け、残された課題に取り組んでいく中で、技術的な質問の回答方法を革新し、開発者やテック愛好家により効率的かつ生産的なコーディング体験を提供する可能性を秘めています。 Phindの新しいAIモデルが、GPT-4を超えるコーディング能力とGPT-3.5のような高速性と16kコンテキストを持つは、最初にMarkTechPostで公開されました。 “`
「5つの最高のスケッチから画像へのAIレンダリングツール(2023年11月)」
デジタルアートとデザインのダイナミックな領域では、スケッチを見事なイメージに変換する能力は高く評価される能力です人工知能の登場により、このプロセスは革命化され、AIによるスケッチから画像へのレンダリングツールが提供されたため、クリエイターはスケッチされたアイデアを洗練されたビジュアルに驚くべき正確さと感性で解釈し、描写することができますこれらのAIによるスケッチからイメージへのレンダリングツールは・・・
5Gパワードロボットがシンガポールの川を清掃
シンガポールを拠点とするウェストンロボットは、ゴミを集め、水質をモニタリングするために無人水上船を提供しています
トランスフォーマーモデルでのNLPの台頭 | T5、BERT、GPTの包括的な分析
自然言語処理(NLP)は、近年、トランスフォーマーアーキテクチャのおかげで最も効果的なブレークスルーを経験してきましたこれらの進展は、機械が人間の言語を理解し生成する能力を向上させるだけでなく、検索エンジンから対話型AIまで、多くのアプリケーションの領域を再定義しました完全に[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.