Learn more about Search Results リリース - Page 7

「キナラがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革命化」

Kinaraは、エネルギー効率の高いエッジAIのパイオニアであるAra-2プロセッサを発表しました。それは、前任者と比べて8倍の高性能を誇り、デバイス内で大規模な言語モデル(LLMs)とさまざまな生成AIモデルを強力にサポートする能力を備えています。 Kinaraのイノベーションへの執念から生まれたAra-2プロセッサは、プロセッサのラインアップの大きな進歩を表しており、顧客にはパフォーマンスとコストのオプションのスペクトラムが用意されています。チームはこの新しい追加の重要性を強調し、Ara-1とAra-2プロセッサの役割を詳細に説明しました。Ara-1はスマートカメラやエッジAIデバイスが2-8のビデオストリームを処理するのに優れている一方、Ara-2はエッジサーバー、ノートパソコン、高性能カメラに向けた16-32+のビデオストリームを素早く処理する能力を示しました。 チームはさらに、Ara-2の変革的な可能性について詳述し、物体検出、認識、トラッキングの向上におけるその重要な役割を強調しました。このプロセッサは、高度なコンピューティングエンジンを活用し、高解像度の画像を迅速かつ驚くほど高い精度で処理することに優れています。また、Generative AIモデルの処理能力は、Stable Diffusionに対して1枚の画像あたり10秒の速度を達成し、LLaMA-7Bに対しては秒間数十のトークンを生成できることで示されています。 Ara-1の後継として設計されたAra-2チップは、前任者と比べて5〜8倍もの大幅なパフォーマンス向上を約束しています。Kinaraは、Ara-2チップがさまざまなモデルで高コストで高消費電力のグラフィックスプロセッサを置き換える潜在能力を持つと主張しています。特に大規模な言語モデル(LLMs)のニーズに対応しています。 2024年1月のConsumer Electronics Show(CES)で発表される予定のAra-2プロセッサは、複数のバリエーションで提供されます。スタンドアロンチップ、単一チップのUSBおよびM.2モジュール、4つのAra-2チップを並列動作させるPCI Expressアドインボードとして利用できます。Kinaraはリリースを予想しながらも、価格の詳細を開示しておらず、愛好家や消費者がこの技術の驚異を探求することを待ち望んでいます。 まとめると、KinaraのAra-2プロセッサは、切り込んだパフォーマンス、多様性、効率を併せ持つオンデバイスAI処理の新時代を告げる存在です。CESでの近い展示は、エッジAI技術の領域を再定義する可能性のある変革的なツールを暗示して、産業界全体で興味を引き起こしています。 この投稿は、KinaraがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革新の投稿最初に現れました。MarkTechPostより。

自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ

この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう

「AIおよび自動化により、2030年に存在しなくなるであろう6つのテクノロジージョブ」

「現在の進行方向に基づいて、バランスを保っているいくつかのテック系の職種をご紹介します」

2024年に探索するべきトップ12の生成 AI モデル

はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…

Google Gemini APIを使用してLLMモデルを構築する

導入 ChatGPTとOpenAIのGPTモデルのリリース、およびMicrosoftとのパートナーシップにより、AIの領域にTransformerモデルをもたらしたGoogleはみんなが諦めた存在となりました。 GPTモデルがリリースされてから1年以上が経過しましたが、GoogleからはPaLM API以外に大きな動きはありませんでした。PaLM APIもあまり注目されず失敗に終わりました。そしてGoogleが突如として紹介した基盤となるモデルのグループ、Geminiが登場しました。Geminiの発売からわずか数日後、GoogleはGemini APIをリリースしました。このガイドでは、Gemini APIをテストし、最終的にはそれを使用してシンプルなチャットボットを作成します。 学習目標 GoogleのGeminiシリーズの基礎知識を学ぶ。これには異なるモデル(Ultra、Pro、Nano)と、テキストと画像のサポートを中心とする多様性が含まれます。 Gemini Proのチャット・モデルを使用してチャットベースのアプリケーションを作成するスキルを開発し、チャットの履歴を維持し、ユーザーの文脈に基づいて応答を生成する方法を理解する。 Geminiが安全であるために、不安全なクエリを処理し、さまざまなカテゴリの安全性評価を提供することにより、責任あるAIの使用を保証する方法を探索する。 Gemini ProとGemini Pro Visionモデルを使用した実践的な経験を積み、画像の解釈と説明を含む、テキスト生成とビジョンに基づく機能を探索する。 Gemini APIとLangchainを統合して、相互作用のプロセスを簡素化する方法を学び、複数のクエリを効率的に処理するための入力と応答のバッチ処理について学ぶ。 この記事はデータサイエンスブログサラソンの一部として公開されました。 Geminiとは何ですか? Geminiは、Googleが構築し導入した新しい基盤モデルのシリーズです。これはこれまでのPaLMと比べて最も大きなモデルセットであり、最初から多様性に焦点を当てて構築されています。これにより、Geminiモデルはテキスト、画像、オーディオ、ビデオなどの異なる情報タイプの組み合わせに強力です。現在、APIは画像とテキストのサポートを提供しています。Geminiは、ベンチマークで最先端のパフォーマンスを達成し、多くのテストでChatGPTとGPT4-Visionモデルを上回っています。 Geminiには、サイズに基づいて3つの異なるモデルがあります。サイズの順に、Gemini Ultra、Gemini Pro、Gemini…

ミストラルAIの最新のエキスパート(MoE)8x7Bモデル

ミストラルAIのMoE 8x7Bを発見しましょうこれはMixture of Experts frameworkを用いた「スケールダウンされたGPT-4」ですこのモデルがどのように印象的な多言語対応能力と効率性を実現しているか、さまざまなタスクで競合モデルを上回るかを学んでください

「AGIに向かって:LLMと基礎モデルが人生の学びの革命で果たす役割」

過去10年間、特にディープラーニングの成功を受けて、人工汎用知能(AGI)の構築の可能性について議論が続いています最終目標は...

デルタテーブルの削除ベクトル:Databricksの操作のスピードアップ

伝統的に、Delta Lakeはコピーオンワイトのパラダイムのみをサポートしており、元のデータファイルは書き込まれるたびに変更されます例:ファイル内の1行が削除されると、...

GPT-4.5 本当か嘘か?私たちが知っていること

テックコミュニティでは、OpenAIの最新バージョンであるGPT-4.5に関する可能性のリークが話題となっています。さまざまなソーシャルメディアプラットフォームで共有されたリークは、正確な場合、印象的な機能と価格体系を明らかにし、大型言語モデルの景色を根本から変える可能性があります。 GPT-4.5の概要 GPT-4.5は、OpenAIの有名なGPT LLMのアップグレードとされており、ビジョン、ビデオ、オーディオ、言語、3Dの分野でマルチモーダルの機能を導入するようです。Twitterユーザーのdaniel_nyugenxによって開始され、Redditのスレッドで議論されたリークは、このモデルの複雑な推論とクロスモーダル理解の可能性を強調しています。ただし、これらの主張の真正性は未確認のままであり、懐疑論も漂っています。 価格の詳細 リークされた草案によると、GPT-4.5は注目を集める新しい価格体系を持っています。このモデルは、入力トークン1Kあたり0.06ドル、出力トークン1Kあたり0.18ドルの価格であると推測されています。詳細な内訳には、GPT-4.5 64KやGPT-4.5オーディオ・スピーチなどのバリアントが含まれています。これらの価格は既存のGPT-4の料金を上回り、ユーザーや開発者に関する潜在的な影響についての議論が行われています。 コミュニティの反応と懐疑論 リークのニュースが広まるにつれて、テックコミュニティは反応が分かれています。一部の人々はこれを画期的な瞬間と見なし、コンテンツ制作の可能性についてのパラダイムシフトを期待しています。しかし、インターネット上での情報の捏造が容易であることを考慮すると、リークの信憑性について疑問を呈する声もあります。元のRedditのスレッドのコメントは、価格と草案の正確性についての不確定性を反映しています。 OpenAIの対応と将来の展望 OpenAIのCEOであるSam Altmanは後にXで「リーク」は本物ではないと確認しました。OpenAIはGPT-4.5をリリースするのか、直接GPT-5に移行するのかは不明です。次のモデルは、2023年3月14日にリリースされたGPT-4の後継となるでしょう。 GPT-3が2020年6月にリリースされてから、GPT-3.5は2022年3月に登場しました。一方、OpenAIは既にGPT-5の開発に取り組んでいます。7月には、AI企業がGPT5の商標申請を行い、音声やテキストに基づくAIベースのソフトウェア、音声をテキストに変換するソフトウェア、音声および音声認識を含んでいます。 11月、OpenAIのCEOであるSam Altmanは、Financial Timesに対してGPT-5の開発に取り組んでいると語りましたが、リリースのタイムラインを確定していません。 私たちの意見 推定されるGPT-4.5のリークの後、テックコミュニティは先進の進化する言語モデルの景色を興奮しながら、潜在的な進歩を考えていました。しかし、OpenAIのCEOであるSam Altmanはリークを早速否定し、その不正確性を強調しました。この事実は、推測される機能と価格に疑問を投げかけ、慎重なアプローチが求められることを示しています。GPT-4.5の可能性は不確実ですが、GPT-5の開発が進行中であるというAltmanの確認は、OpenAIの計画に興味を持つ人々にとって興味深いものとなっています。熱心なファンは公式なアップデートを待ちながら、進化する高度な言語モデルの世界を航海する際には、検証された情報に頼る重要性を強調しています。

「MLX対MPS対CUDA:ベンチマーク」

「もしMacユーザーであり、深層学習の愛好家であれば、おそらくMacが重いモデルを処理できると願っていたことでしょうそうですよね?実は、AppleがMLXというフレームワークをリリースしました…」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us