Learn more about Search Results リソース - Page 7

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「AIアクトの解読」

AI法 [1]は、長く苦痛な過程を経て形成されましたこれは、ヨーロッパの立法プロセスにおける政治の影響と重要性を完璧に示すものですしかし、同時に欠陥があることも問題として浮かび上がります...

インドのスタートアップ、OpenHathiをリリース:初のヒンディー語LLM

言語の革新に向けた注目すべき一歩として、インドのAIスタートアップSarvam AIがOpenHathi LLMをリリースし、ヒンディー語の言語モデルの領域で重要な進歩を遂げました。シリーズAの資金調達で4100万ドルという印象的な数字を獲得したわずか1週間後、同社はOpenHathiシリーズの初のリリースであるOpenHathi-Hi-v0.1を発表しました。 OpenHathiの起源 Sarvam AIの最新の創作物は、ヒンディー語の微妙さに合わせて特別に設計されたMeta AIのLlama2-7Bアーキテクチャに基づいています。OpenHathiシリーズの最初のヒンディー語の大規模言語モデル(LLM)と位置づけられ、インド系言語のGPT-3.5と同等のパフォーマンスを約束しています。このモデルの基盤は、Llama2-7Bの機能を拡張する予算に優しいプラットフォームにあるのです。 トレーニングプロセスの紹介 OpenHathi-Hi-v0.1は、入念な2つのフェーズのトレーニングプロセスを経ます。最初に、ランダムに初期化されたヒンディー語の埋め込みを整列させる埋め込みの整列に焦点を当てます。次に、モデルはバイリンガルな言語モデリングに取り組み、トークン間でクロスリンガルな注意を習得します。その結果、ヒンディー語のさまざまなタスクで堅牢なパフォーマンスが得られ、ネイティブおよびローマ字表記のスクリプトの両方で優れた能力を発揮できるようになります。 協力と学術貢献 Sarvam AIのOpenHathi-Hi-v0.1は、AI4Bharatの学術パートナーとの共同開発によるもので、これらのパートナーが提供する言語リソースとベンチマークを活用しています。この共同の取り組みは、最近KissanAIが発表したDhenu 1.0のように、英語、ヒンディー語、ヒングリッシュの農業に関する大規模言語モデルで示されるように、言語の境界を超えて拡張されています。 Sarvam AIの今後の展望 Sarvam AIの共同設立者であるPratyush KumarとVivek Raghavanは、2023年7月にスタートアップを立ち上げました。Lightspeed Venturesを中心とする大規模なシリーズAの資金調達に支えられ、彼らは多様なインド言語のための生成AI統合を通じてインドの固有のニーズに対応することを目指しています。彼らの関心は、データをバックボーンとしてドメイン固有のAIモデルの開発における企業との協力関係の育成にも及んでいます。 私たちの意見 言語の多様性が重要視される環境において、Sarvam AIのOpenHathi-Hi-v0.1は、インドの言語AIのイノベーションへのコミットメントを体現した約束された進化として現れます。学術パートナーとの協力的な姿勢と明確な将来のロードマップにより、Sarvam AIは生成AIの分野での指針となる存在として位置付けられています。モデルが開発者にその潜在能力を探求するよう促す中、創造性と専門化されたモデルの連鎖反応がインドのAIの領域をさらに豊かにすることが期待されます。…

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…

Google AIとフロリダ中央大学の研究者が、包括性と多様性のためのオープンソースのバーチャルアバターライブラリ(VALID)を発表しました

Google AR&VRチームは、センサスビューローに従って7つの異なる人種を表す210の完全なリグ付きアバターで構成されるバーチャルアバターライブラリ「VALID」を検証するため、University of Central Floridaと協力して総合的な研究を実施しました。データ駆動型の顔の平均値を利用し、各民族のボランティア代表者と共同して42のベースアバター(7つの人種×2つの性別×3つの個人)を作成するために、7つの人種の選択は米国国勢調査局のガイダンスに従って行われました。研究には、世界中の参加者からバリデーションされたラベルとメタデータを得るため、132人の参加者(33か国)が選ばれました。 結果は、参加者がアバターの人種をどのように認識したかを理解するために、主成分分析(PCA)とK-平均クラスタリングを使用したバリデーションプロセスを採用しました。参加者の人種と性別をバランスさせることで多様な視点のバランスをとるために、世界中の33か国から合計132人の参加者が研究のために選ばれました。 結果は、アジア人、黒人、白人のアバターが、さまざまな人種の参加者によって一貫して認識されていることを示しました。しかし、米国先住民・アラスカ先住民(AIAN)、ヒスパニック、中東、北アフリカ(MENA)、ハワイと太平洋の先住民族(NHPI)を表すアバターは、参加者の人種によって認識に差異があり、曖昧さがより顕著でした。同じ人種の参加者が対応する人種として認識した場合、アバターはその人種に基づいて名前が付けられます。 研究者たちは、アジア人、黒人、白人のアバターが、すべての参加者を対象に95%以上の合意率で正しく認識されたという結果について議論し、自身と異なる人種の顔を識別する際の低い65〜80%の正確性の概念を挑戦していると述べました。これは、多様な人種グループに対する知覚の専門知識またはなじみによるものであり、おそらくグローバルなメディアの影響を受けたものと考えられます。 同じ人種の参加者によって主に正しく認識されたアバターもありました。たとえば、ヒスパニックのアバターは参加者全体で評価が分かれましたが、ヒスパニックのみの参加者によってより正確に認識されました。研究では、正確な表現を確保するためにバーチャルアバターの研究において参加者の人種を考慮することの重要性が強調されています。 髪型などの要因により、アバターが曖昧にラベルされる場合がありました。ハワイ先住民と太平洋の島々を表すアバターの検証は限界があり、表現の課題と広範な選考努力の必要性が強調されました。 研究チームは、内グループと外グループのカテゴリ化によるステレオタイプ化と社会的判断への影響を強調し、仮想現実における異人種間の相互作用を改善するための規制の導入を提案しました。 研究コミュニティへの貢献として、チームはVALIDアバターライブラリへのオープンアクセスを提供し、さまざまなシナリオに適した多様なアバターが利用可能です。このライブラリには、65の顔のブレンドシェイプを持つアバターが含まれており、UnityやUnrealなどの人気のあるゲームエンジンと互換性があります。研究者および開発者が自身の研究やアプリケーションに適した多様で包括的なアバターを求めるための貴重なリソースとして、オープンアクセスのVALIDライブラリが位置付けられています。 まとめると、研究チームは多様なバーチャルアバターライブラリを作成し、ステレオタイプに挑戦し、包括性を促進しました。研究はアバターの認識における同じ人種バイアスの影響を強調し、さまざまな分野での仮想アバターの開発と応用について貴重な洞察を提供しました。オープンアクセスのVALIDライブラリは、研究者や開発者が研究やアプリケーションに多様で包括的なアバターを求める際の貴重なリソースとされています。

ドメイン固有アプリケーションのためのLLM細かい調整戦略

「LLMファインチューニングとは何か、LLMをドメイン特化アプリケーションに適応する方法、ファインチューニングの種類などを理解する」

「Amazon SageMaker Pipelines、GitHub、およびGitHub Actionsを使用して、エンドツーエンドのMLOpsパイプラインを構築する」

機械学習(ML)モデルは孤立して動作するものではありません価値を提供するためには、既存の製造システムやインフラに統合する必要がありますそのため、設計と開発の過程でMLライフサイクル全体を考慮する必要がありますMLオペレーション(MLOps)は、MLモデルの生涯にわたって効率化、自動化、およびモニタリングを重視しています堅牢なMLOpsパイプラインを構築するには、異なる部門間の協力が求められます[…]

「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」

この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」

AIの新たなフロンティアを探る:Google DeepMindのReSTEM自己学習による機械学習の進化に関する研究

大型の言語モデル(LLMs)は、人間レベルのテキストを生成し、さまざまな言語タスクを実行する驚異的な能力によって、ディープラーニングを変革しています。高品質な人間データを入手することは、興味のあるタスクの性能をさらに向上させるための敷居となっています。特に、多くのリソースと専門知識を必要とする複雑な問題解決の割り当てには負担がかかります。この障害を克服するために、モデル生成の合成データは、その品質が保証される場合にはスケーラブルかつ手頃な解決策として有望です。 この研究では、Google DeepmindとMilaの研究者は、LLMsが作成されたデータを自己評価できる場合でも、外部のスカラーフィードバック信号が各生成サンプルの品質指標として機能するより簡単なシナリオを調査しています。研究チームは、言語モデルのための直感的で効果的なセルフトレーニング技術を提案しています。この手法は、2つのスキルのみを必要とします:1)モデルからサンプルを作成すること、および2)これらのサンプルをスコアリングメカニズムを使用して評価すること。このアプローチにより、モデルが生成したデータによるトレーニングを研究することができます。研究チームは、Reinforced Self-Trainingの呼び方を使い、この技術をReST𝐃𝑀と呼んで一貫性と明確性を実現しています。研究チームは、ReST𝐃𝑀を強化学習のための期待最大化と考えることができる方法を示しています。 具体的には、ReST𝐃𝑀は以下のように期待値と最大値のフェーズを切り替えています:1. 生成(Eステップ):入力コンテキストごとに、言語モデルは複数の出力サンプルを生成します。その後、研究チームはこれらのサンプルを2値報酬を使用してフィルタリングしてトレーニングデータセットを収集します。2. 改善(Mステップ):元の言語モデルは、前の生成フェーズからのトレーニングデータセットを使用して監視および微調整されます。次の生成フェーズでは、調整されたモデルが使用されます。ReST𝐃𝑀およびその派生版は、機械翻訳、意味解析、および好みの整合において、言語モデルの向上に効果的であることが示されています。 ReST𝐃𝑀は、主に非常に小さな言語モデル(最大7Bのパラメータまで)で従来の研究で使用され、より大きなモデルに対しては限定的なスケーラビリティがありました。彼らの研究は、モデルによって作成された合成データと人間提供データのスケーラビリティと効果を比較することにより、これらの取り組みを補完することを意図しています。具体的には、コード生成(APPS)および競技レベルの数学的問題解決(MATH)という2つの難しいが研究されていないドメインで、パLM 2モデルに対してReST𝐃𝑀を適用することで、数学的な推論力とコード生成のスキルが大幅に向上することを示しています。 驚くべきことに、モデルによって作成された人工データで改良されたモデルは、人間が提供したデータでトレーニングされたモデルよりもはるかに優れた性能を発揮します。さらに、ReST𝐃𝑀の数サイクル後に改善が低下し、トレーニングケースの数に過学習の可能性が示唆されています。また、ReST𝐃𝑀を使用して最適化されたモデルは、pass@kおよび多数決の機能を向上させます。最後に、これらの改良されたモデルは、ビッグベンチハードタスク、コーディング(ヒューマン評価)、および算術問題(GSM8KおよびハンガリーHS決勝)を含む類似したが異なるベンチマークでのパフォーマンスも向上しています。最後に、ReST𝐸𝑀の微調整におけるトレーニング問題、反復回数、およびモデル生成ソリューションの量の影響を調査するための削除研究が行われています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us