Learn more about Search Results プロファイリング - Page 7

「メタは、AIチャットボットを個性付けて使用できると報告されています」

「エイブラハム・リンカーンとチャットしたいですか?FacebookのオーナーであるMetaは人工知能のリーダーですが、すでに高度なチャットボットを持つライバルもたくさん存在しています」

大規模言語モデルの挙動を監視する7つの方法

自然言語処理の世界では、大規模言語モデル(LLM)の使用による急速な進化が見られています彼らの印象的なテキスト生成およびテキスト理解能力を通じて、LLMは...

head()とtail()関数の説明と例、コード

ヘッドとテールの関数は、Pythonの人気のあるpandasパッケージの文脈で特に重要なデータ分析とプログラミングツールです。この記事では、Python、R、および他の関連するプログラミング言語での具体的なコード例を使用して、ヘッドとテールの関数について詳しく説明し、さまざまなデータ分析の文脈での重要性を示します。 head()関数とは何ですか? head()関数は、データセットの最初のいくつかの行を表示するために主に使用されます。これにより、ユーザーはデータとその構造の概要を素早く把握することができます。初期のレコードを表示することで、列名、データ型、およびデータ自体を確認することができます。head()関数は、PythonやRを含む多くのプログラミング言語で利用できます。 tail()関数とは何ですか? tail()関数は、head()と同様にデータセットの最後のいくつかの行を迅速に表示します。特に大規模なデータセットで作業する場合に役立ちます。データが完全であり、データセットの末尾にトレンドや異常値がないかを確認することができます。 Pythonでのhead()とtail()の例(Pandasを使用) import pandas as pd # サンプルのデータフレームを作成 data = {'Name': ['Ankit', 'Bhavya', 'Charvi', 'Diya', 'Eesha'], 'Age': [25, 30, 22,…

MySQLのJSON_ARRAYAGG関数をハッキングして、動的で複数値の次元を作成する

「データチームのメンバーとして、定期購入ボックス会社で働いていると想像しましょうMySQLデータベースでは、購入の取引記録がsubscriptionsというテーブルに書き込まれますメタデータを除いた場合、...」

「データサイエンスのプログラムでは教えてくれないが知っておくべき8つのこと−パート1」

データサイエンティストが持つべき基本知識Pythonの仮想環境、データサイエンティストのためのLinux、リモートシステムでの計算、デバッグ

ミシガン州立大学の研究者たちは、規模の大きな一細胞遺伝子発現の分析をサポートするためのPythonライブラリ「DANCE」を開発しました

単一モダリティのプロファイリング(RNA、タンパク質、オープンクロマチン)から多モダリティのプロファイリングや空間的トランスクリプトミクスまで、単一細胞の解析技術は近年急速に進化しています。特に機械学習に基づくコンピュータアプローチの急速な拡大により、多くの計算アプローチが生まれました。 現在のアプローチの多様性と複雑さのため、元の論文の結果を再現することは困難です。ハイパーパラメータの調整、プログラミング言語の非互換性、公開されたコードベースの欠如など、多くの障害が存在します。既存の研究のほとんどは限られたデータセットと不十分な方法論との比較でパフォーマンスを報告しているため、方法を完全に評価するためには体系的なベンチマーク手法が必要です。 最近の研究の一環として、ミシガン州立大学、ワシントン大学、浙江工業大学、スタンフォード大学、ジョンソン・エンド・ジョンソンの研究者らは、単一細胞解析の進歩を加速させるために設計されたDANCEというディープラーニングライブラリとベンチマークを紹介しています。 DANCEは、スケールで単一細胞データを分析するための包括的なツールセットを提供し、開発者がより簡単かつ効率的に独自のディープラーニングモデルを作成できるようにします。また、単一細胞解析のさまざまな計算モデルのパフォーマンスを比較するためのベンチマークとして使用することもできます。現在のDANCEには、3つのモジュール、8つのタスク、32のモデル、21のデータセットのサポートが含まれています。 現在、DANCEは以下の機能を提供しています: 単一モダリティの解析 多モダリティの解析 空間的トランスクリプトミクスの解析 オートエンコーダとGNN(グラフニューラルネットワーク)は、幅広く使用されているディープラーニングフレームワークであり、あらゆる場面で活用できます。研究論文によると、DANCEは単一細胞解析のための包括的なベンチマークプラットフォームとして初めて開発されました。 この研究では、研究者らは新しいコンポーネントを使用しました。彼らは、タスク固有の標準ベンチマークデータセットをまとめ、単一のパラメータ調整で簡単に利用できるようにしました。すべてのタスクに対して、基本的なクラシカルなディープラーニングアルゴリズムが実装されています。収集されたすべてのベンチマークデータセットは、元の研究と同様またはそれ以上の結果を得るまで、ベースラインを微調整するために使用されます。エンドユーザーは、事前にすべてのスーパーパラメータをまとめてラップしたコマンドラインを実行するだけで、微調整されたモデルのパフォーマンスを取得することができます。 チームはバックボーンとしてPyTorch Geometric(PSG)フレームワークを使用しました。さらに、ベースラインをフィット-予測-スコアのフレームワークに変換することで、ベースラインを標準化しました。各タスクについて、すべての実装されたアルゴリズムは、グリッドサーチを介して収集されたすべての標準ベンチマークで微調整され、最適なモデルを得るために使用されます。関連するスーパーパラメータは、ユーザーの再現性のために単一のコマンドラインに保存されます。 チームは、自分のデバイスの処理能力とストレージ容量に完全に依存する必要がないようにするため、DANCEをSaaSサービスとして提供する予定です。また、ディープラーニングベースのモデルの高速なトレーニングのために、グラフィックスプロセッシングユニット(GPU)のサポートも提供しています。 現在のDANCEは、前処理とグラフ作成のための統一されたツールセットが不足しています。チームは将来的にこれに取り組む予定です。また、DANCEはSaaSサービスとして提供されるため、ユーザーは自身のデバイスの処理能力とストレージ容量に完全に頼る必要はありません。 この記事は、「DANCE: A Deep Learning Library and Benchmark for Single-Cell Analysis」という研究論文をもとにMarkTechPostスタッフがまとめた研究概要記事です。この研究に関するすべてのクレジットはこのプロジェクトの研究者に帰属します。論文、コード、ツールをチェックしてください。…

リアルタイムでデータを理解する

このブログ投稿では、オープンソースのストリーミングソリューションであるbytewaxと、ydata-profilingを組み合わせて活用する方法について説明しますこれにより、ストリーミングフローの品質を向上させることができます

「ETLとは何ですか?トップのETLツール」

抽出(Extract)、変換(Transform)、ロード(Load)は、ETLと呼ばれます。 ETLは、データを多数のソースから収集し、標準化してから追加の分析のために中央のデータベース、データレイク、データウェアハウス、またはデータストアに転送するプロセスです。 ETLプロセスは、多数のソースからの構造化または非構造化データを従業員が理解し、定期的に使用できる単純な形式に変換します。エンドツーエンドのETLプロセスの各ステップには以下が含まれます: 1. データの抽出 抽出されたデータは、構造化および非構造化の1つまたは複数のソースから取得されます。これらのソースには、ウェブサイト、モバイルアプリ、CRMプラットフォーム、オンプレミスのデータベース、レガシーデータシステム、分析ツール、SaaSプラットフォームなどが含まれます。取得が完了すると、データはステージングエリアにロードされ、変換の準備が整います。 2. データの変換 変換ステージでは、抽出されたデータをクリーニングおよびフォーマットして、選択したデータベース、データストア、データウェアハウス、またはデータレイクに格納する準備をします。目的は、データを対象のストレージでクエリ可能な状態にすることです。 3. ロード 準備されたデータをターゲットデータベース、データマート、データハブ、データウェアハウス、またはデータレイクに移動することをロードと呼びます。データは2つの方法でロードできます:段階的に(増分ロード)または一度にすべて(全体ロード)。データはバッチでスケジュールされるか、リアルタイムでロードされることもあります。 増分データロードは、受信データと既存データを比較して重複を排除します。全体ロードでは、変換アセンブリラインから出てくるすべてのアイテムが最終的なデータウェアハウスまたはリポジトリに輸送されます。 ETLツールは何をするのか? ETL手法全体をETLツールを使用して自動化します。ETLソリューションは、エラーを減らし、データ統合を高速化するために、抽出、変換、ロード(ETL)プロセスを自動化するためにいくつかのデータ管理戦略を使用します。 さらに、ETLツールの使用例には以下があります: 大量の構造化および非構造化データの処理、管理、および取り込みをローカルおよびクラウド上で自動化する。 データを適切な分析場所に安全に配信する。 それらを歴史的な観点に置くことで、現在のデータセットと過去のデータセットの評価、評価、理解をより簡単にする。 MongoDB、Cloud SQL for MySQL、Oracle、Microsoft SQL…

「2023年の機械学習モデルにおけるトップな合成データツール/スタートアップ」

実際の出来事の結果ではなく、意図的に作成された情報は、合成データとして知られています。合成データはアルゴリズムによって生成され、機械学習モデルのトレーニング、数学モデルの検証、テストプロダクションや運用データのテストデータセットの代替として使用されます。 合成データを使用する利点は、プライベートまたは制御されたデータを使用する際の制約の緩和、正確なデータでは満たせない特定の状況にデータ要件を調整すること、DevOpsチームがソフトウェアテストや品質保証に使用するためのデータセットを生成することなどです。 元のデータセットの複雑さを完全に複製しようとする際の制約は、不一致につながる可能性があります。実用的な合成例を生成するには、正確で正確なデータが依然として必要であるため、正確なデータを完全に代替することは不可能です。 合成データの重要性 ニューラルネットワークをトレーニングするために、開発者は広範で細心の注意を払ったデータセットが必要です。AIモデルは通常、より多様なトレーニングデータを持っているほど正確です。 問題は、数千から数百万のアイテムを含むデータセットを編集し、識別するのに多くの労力がかかり、頻繁に手頃な価格ではないことです。 ここで偽のデータが登場します。AI.Reverieの共同創設者であるPaul Walborsky氏は、ラベリングサービスから6ドルかかる単一の画像を、6セントで合成的に生成できると考えています。 お金を節約することは始まりに過ぎません。Walborsky氏は、「合成データは、プライバシーの懸念や偏見を減らすため、現実世界を正確に反映するためのデータの多様性を確保することが重要です。」と述べています。 合成データセットは、時には現実のデータよりも優れている場合があります。合成データは自動的にタグ付けされ、意図的に一般的ではないが重要な特殊な状況を含めることができます。 合成データのスタートアップおよび企業のリスト Datagen イスラエルの企業Datagenは2018年に設立され、2,200万ドルの資金調達を行っています。そのうち1,850万ドルのシリーズAが2月に行われ、その時が同社の公式な登場の機会でした。Datagenは、人間の動きに明らかな専門知識を持ち、フォトリアリスティックな視覚シミュレーションと自然界の再現に特化しており、その特異な合成データを「シミュレートデータ」と呼んでいます。Datagenは、合成データを扱う多くの他の企業と同様に、生成的敵対的ネットワーク(GAN)というAI手法を使用しています。これは、2つのシステム間のコンピューター将棋のようなものであり、一方が架空のデータを生成し、他方が結果の真実性を評価します。Datagenは、GANを物理シミュレーターと組み合わせ、強化学習ヒューマノイドモーションテクニックとスーパーレンダリングアルゴリズムを使用しています。 Datagenは、小売業、ロボット工学、拡張現実、仮想現実、モノのインターネット、自動運転車など、様々な産業をターゲットにしています。例えば、Amazon Goの場所のような小売自動化では、コンピュータービジョンシステムが買い物客を監視して、誰もが不正行為をしないことを確認しています。 Parallel Domain 自動運転車のための環境シミュレーションは、現在最も一般的なユースケースの1つです。それがSilicon ValleyのスタートアップであるParallel Domainの主要な事業領域です。Parallel Domainは2017年に設立され、その後約1,390万ドルの資金調達を行っています。その中には、昨年末の1,100万ドルのシリーズAも含まれています。トヨタはおそらく最大の支援者および顧客です。Parallel Domainは、合成データプラットフォームを使用して自動運転車に人々を殺すことを避ける方法を教えるために、最も困難なユースケースに焦点を当てています。最近の開発では、トヨタリサーチインスティチュートとのパートナーシップにより、合成データを使用して物体の恒久性について自律システムに教えています。現在の認識システムは、Parallel Domainのおかげで一時的に消える場合でもオブジェクトを追跡できるようになりましたが、まだpeek-a-booのようなものです。さらに、同社は完全に注釈付きの合成カメラとLiDARデータセットのデータビジュアライザを一般に公開しています。同社は、自律型ドローンデリバリーや自動運転のための人工的なトレーニングデータも提供しています。 Mindtech…

「Great Expectationsを始めよう Pythonにおけるデータ検証ガイド」

「企業とのデータサイエンスプロジェクトに取り組む場合、通常は大学や研究と異なり、固有のテストセットは持たず、クライアントから新たに更新されたサンプルを受け取り続けますそれまでに...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us