Learn more about Search Results フ - Page 7
- You may be interested
- 「プロダクションに適したRAGアプリケーシ...
- PyTorchを使用した効率的な画像セグメンテ...
- 自動化された欺瞞検出:東京大学の研究者...
- 「二つの頭を持つ分類器の使用例」
- 2024年に注目すべきAIを活用したヘルスケ...
- このAI論文は、デュアル1-Dヒートマップを...
- 「大規模言語モデルのパディング — Llama ...
- 新しいAIメソッド、StyleAvatar3Dによるス...
- 『circ2CBAを紹介 circRNA-RBP結合サイト...
- 『ブンブンの向こう側 産業における生成型...
- 新車販売が加速し、チップ不足が緩和される
- ダッシュカムの映像が警察の展開地を明ら...
- 「テキストゥアをご紹介します:3Dメッシ...
- 「AIは個人の知識管理をどのように変革し...
- チューリッヒ大学の研究者たちは、スイス...
「Spotifyの秘密兵器:AIによる生成プレイリスト」
AIプレイリスト機能の公開 この秋、鋭い目を持つユーザーたちはSpotifyのストリーミングアプリで新しい機能を発見しました。AIによるプレイリスト作成がプロンプトを通じて可能になりました。SpotifyはTechCrunchに対してテストを確認しましたが、技術や仕組みに関する詳細は非公開であり、ユーザーを興味津々にさせています。この機能は、ユーザー@robdad_によるTikTokの動画で公に注目されました。彼はそれを「SpotifyのChatGPT」と呼んだものを見つけました。 AIプレイリストの操作方法 Spotifyのアプリの「ライブラリ」タブからアクセスできるAIプレイリスト機能は、シームレスに統合されています。ユーザーは画面の右上にあるプラス(+)ボタンをタップすることでプレイリスト作成プロセスを開始できます。ポップアップメニューが表示され、既存の「プレイリスト」と「ブレンド」の選択肢に加えてAIプレイリストのオプションが提供されます。選択した後、ユーザーはAIチャットボットのようなボックスにプロンプトを入力するか、「仕事で集中するためのインストゥルメンタルエレクトロニカ」や「ウィッチハウスのようなニッチなジャンルを探索」などの提案されたプロンプトのリストから選択する画面が表示されます。 AIプレイリスト生成の背後の舞台 @robdad_が共有したスクリーンショットでは、プロンプトの選択プロセスが示されており、「背景のカフェ音楽で静寂を埋める」や「楽しく前向きな曲で気分を高める」などのオプションが表示されます。AIチャットボットは「リクエストを処理中です…」と応答し、サンプルプレイリストを示します。ユーザーは、含めたくない曲がある場合に左にスワイプしてプレイリストをさらに調整する柔軟性があります。 SpotifyのAI探求は続きます これはSpotifyがAIによる機能を取り入れる最初の試みではありません。この大きなストリーム配信会社は、今年早くもAIパワーのDJを導入し、曲の推薦や面白い振る舞いで音楽聴取体験を変革しました。製品デザイナーのChris Messinaによる最近のコードの発見は、AIを使ったプレイリスト作成による広範な応用を示唆しており、Spotify Blendにも拡張される可能性があります。ただし、Spotifyは詳細について沈黙を守り、「Spotifyでは、製品の提供を改善し、ユーザーに価値を提供するために常に反復改善、アイデアを考え続けています」と述べています。 私たちの見解 SpotifyのAIによるプレイリストの実験は、音楽ストリーミングの領域での技術革新に対する同社の取り組みを反映しています。詳細はまだ不足していますが、AIプロンプトを通じてユーザーがカスタマイズされたプレイリストを作成する可能性は、Spotify体験に刺激的な次元を加えます。SpotifyがAIで限界を超えていくにつれて、この機能がどのように発展し、プラットフォーム全体に統合されていくかが興味深いです。 AIプレイリスト機能のテストが継続されることで、Spotifyユーザーはプレイリスト作成において大きな変革が期待できます。技術が進化するにつれて、お気に入りの音楽とのインタラクション方法も変わっていきますが、SpotifyはこのAI駆動の未来への先導を固く決意しています。
モデルインサイトの視覚化:ディープラーニングにおけるGrad-CAMのガイド
イントロダクション グラジエント重み付きクラスアクティベーションマッピングは、CNNでの意思決定を可視化し理解するためのディープラーニングのテクニックです。この画期的なテクニックはCNNが行った隠れた意思決定を明らかにし、不透明なモデルを透明なストーリーテラーに変えます。これは、ニューラルネットワークの注意を引く画像の本質をスポットライトで浮き彫りにする魔法レンズと考えてください。では、どのように機能するのでしょうか? Grad-CAMは、最後の畳み込み層の勾配を分析することで、特定のクラスの各特徴マップの重要性を解読します。 Grad-CAMはCNNを解釈し、予測を明らかにし、デバッグを支援し、パフォーマンスを向上させます。クラスの識別とローカル化はできますが、ピクセル空間の詳細の強調はありません。 学習目標 CNNベースのモデルでの解釈性の重要性を理解し、透明性と説明可能性を高めます。 Grad-CAM(Grad-CAM(グラジエント重み付きクラスアクティベーションマッピング))の基礎を学び、CNNの意思決定を視覚化し解釈するための技術を理解します。 Grad-CAMの実装手順に洞察を得て、イメージ中の重要な領域をモデルの予測のためにハイライトするためのクラス活性化マップを生成することを可能にします。 Grad-CAMがCNNの予測において理解と信頼を高める実世界の応用とユースケースを探索します。 この記事はData Science Blogathonの一部として公開されました。 Grad-CAMとは何ですか? Grad-CAMは、グラジエント重み付きクラスアクティベーションマッピングの略です。これは、ディープラーニング、特に畳み込みニューラルネットワーク(CNN)で使用される技術で、特定のクラスのネットワークの予測にとって重要な入力画像の領域を理解するために使用されます。 Grad-CAMは、複雑な高パフォーマンスのCNNモデルを理解することを可能にする技術であり、精度を損なうことなく可解釈性を提供します。 Grad-CAMは、アーキテクチャの変更や再トレーニングがなく、CNNベースのネットワークのための視覚的な説明を生成するクラス識別ローカリゼーション技術として特徴付けられています。この手法は、Grad-CAMを他の視覚化手法と比較し、クラスの識別力と高解像度の視覚的説明を生成することの重要性を強調します。 Grad-CAMは、CNNの最後の畳み込み層に流れるグラジエントを分析することで、画像の重要な領域をハイライトするヒートマップを生成します。 Grad-CAMは、最後の畳み込み層の特徴マップに関連する予測クラススコアの勾配を計算することで、特定のクラスの各特徴マップの重要性を判断します。 ディープラーニングにGrad-CAMが必要な理由 Grad-CAMは、ディープラーニングモデルの解釈性の重要性に対応するために必要です。これにより、さまざまなコンピュータビジョンタスクで提供する精度を損なうことなく、これらのモデルが予測に至る方法を視覚化し理解する手段が提供されます。 +---------------------------------------+ | | |…
「CMUとマックス・プランク研究所の研究者が、画期的なAI手法「WHAM」を発表:ビデオからの正確かつ効率的な3D人間動作推定」
3Dヒューマンモーション再構築は、三次元で人間の動きを正確にキャプチャしてモデル化する複雑なプロセスです。カメラが動いている実世界の環境でキャプチャされたビデオは、足の滑りなどの問題がしばしば含まれており、この作業はさらに困難になります。しかし、カーネギーメロン大学とマックスプランクインテリジェントシステム研究所の研究者チームは、WHAM(World-grounded Humans with Accurate Motion)という手法を開発し、これらの課題に対応し、正確な3Dヒューマンモーション再構築を実現しました。 この研究では、画像から3Dヒューマンポーズと形状を回復するための2つの手法、モデルフリーとモデルベースのアプローチを見直しています。統計的なボディモデルのパラメータを推定するために、モデルベースの手法でディープラーニング技術の使用を強調しています。既存のビデオベースの3D HPS手法では、さまざまなニューラルネットワークアーキテクチャを介して時間的な情報を組み込んでいます。一部の方法では、慣性センサーなどの追加のセンサーを使用していますが、これらは侵入的な場合があります。WHAMは、3Dヒューマンモーションとビデオコンテキストを効果的に組み合わせ、事前知識を活用し、グローバル座標系で正確な3D人間活動の再構築を実現することで注目されています。 この研究では、単眼ビデオから3Dヒューマンポーズと形状を精度良く推定する際の課題に取り組み、グローバル座標の一貫性、計算効率、現実的な足-地面接触を強調しています。WHAMは、2Dキーポイントを3Dポーズに変換するためのモーションエンコーダ-デコーダネットワーク、時間的な手がかりのための特徴結合器、および足接触を考慮したグローバルモーション推定のための軌跡リファインメントネットワークを組み合わせて、AMASSモーションキャプチャとビデオデータセットを活用しています。これにより、非平面表面における精度が向上し、足の滑りが最小限に抑えられます。 WHAMはオンライン推論と正確な3Dモーション再構築のために単方向RNNを使用し、コンテキスト抽出のためのモーションエンコーダとSMPLパラメータ、カメラの移動、足-地面接触確率のためのモーションデコーダを備えています。モーションコンテキストの抽出にはバウンディングボックスの正規化手法を活用しています。ヒューマンメッシュリカバリで事前にトレーニングされた画像エンコーダは、フィーチャインテグレータネットワークを介して画像特徴とモーション特徴をキャプチャし統合します。軌跡デコーダはグローバル方向を予測し、リファインメントプロセスは足の滑りを最小化します。 WHAMは、合成AMASSデータでトレーニングされ、評価において既存の手法を凌駕しています。 https://arxiv.org/abs/2312.07531 WHAMは、現在の最先端の手法を凌駕し、フレームごとおよびビデオベースの3Dヒューマンポーズと形状の推定において優れた精度を示しています。WHAMは、モーションコンテキストと足接触情報を活用し、足の滑りを最小限に抑え、国際的な調整を向上させることで、正確なグローバル軌道推定を実現しています。この手法は、2Dキーポイントとピクセルの特徴を統合することで、3Dヒューマンモーション再構築の精度を向上させています。野外のベンチマークによる評価では、MPJPE、PA-MPJPE、PVEなどのメトリクスにおいてWHAMの優れた性能が示されています。 まとめると、この研究の主なポイントは以下の通りです: WHAMは、3Dヒューマンモーションとビデオコンテキストを組み合わせる革新的な手法を導入しました。 この手法は、3Dヒューマンポーズと形状の回帰を向上させます。 グローバル軌道推定フレームワークには、モーションコンテキストと足接触を組み込んでいます。 この手法は、足の滑りの課題に取り組んでおり、非平面の表面において正確な3Dトラッキングを保証します。 WHAMのアプローチは、3DPW、RICH、EMDBなどの多様なベンチマークデータセットで優れたパフォーマンスを発揮します。 この手法は、グローバル座標で効率的なヒューマンポーズと形状の推定を行います。 特徴統合と軌跡リファインメントにより、モーションとグローバル軌道の精度が大幅に向上します。 有益な除去研究によって、この手法の精度が検証されています。
「NYUとGoogle AIの研究者が、機械学習の先進的な演繹的推論のフロンティアを探る」
多くの割引ルールの使用とサブプルーフの構築により、証明の複雑さは医療診断や定理の証明などの多くの論理推論の課題において無限に発展することができます。巨大な証明領域のため、すべてのサイズの保証をカバーするためのデータを見つけることは実際的ではありません。したがって、基本的な証明から始めて、一般的な推論モデルはより複雑な証明へと拡張することができるはずです。 NYUとGoogle AIの研究者のチームは、インコンテキストの学習(ICL)と思考連鎖(CoT)のプロンプトを使用してトレーニングされた場合、LLMsが論理的な推論を行うことができることを実証しました。過去の研究では、モーダスポネンスなどの一部の割引ルールが主な焦点でした。評価もデモンストレーション中であり、テストケースはインコンテキストのデモンストレーションと同じ分布から抽出されたものです。 LLMsがデモンストレーションよりも洗練された証明を一般化できる能力は、ニューヨーク大学、Google、ボストン大学の研究者による新しい研究のテーマです。学者は証明を以下の3つの次元で分類します: デモンストレーションの各ステージで使用される前提の数。 証明を構成する一連の手順の長さ。 使用される割引ルール。 証明の総サイズはこれらの3つの次元の関数です。 このグループは、LLMsの一般的な論理的推論能力を評価するために、以前の研究を2つの重要な点で拡張しています。モーダスポネンス以外の割引ルールもマスターしているかどうかをテストします。彼らの推論能力は次の2つの方法でテストされます: 深度と幅の一般化では、インコンテキストの例よりも長い証明に対する推論が行われます。 構成的一般化では、1つの証明で多くの割引ルールを使用します。 彼らの研究によると、基本的な例を提示することで、論理的な推論タスクはインコンテキストの学習から最も利益を得ることができます。モデルが適合しすぎないようにするためには、インコンテキストの例に、証明において未知の割引の原則(例:ケースによる証明や反証による証明など)が含まれる必要があります。さらに、これらの例には迷彩要素も含まれている必要があります。 研究結果によると、CoTはLLMsにおける組成的証明へのOOB推論を引き起こすことができます。これらのLLMsには、スケールとトレーニング目標が異なるGPT-3.5 175B、PaLM 540B、LLaMA 65B、FLAN-T511Bが含まれています。この発見は驚くべきものであり、LLMsには組成的一般性がないとする文献の豊富さを考えると意外です。ICLは、インコンテキストのサンプルに対する監督学習とは異なる方法で一般化します。テスト例と同じ分布からのインコンテキストの例を与えることは明らかに悪影響です。たとえば、インコンテキストの例に特定の割引ルールが組み込まれている場合、研究者は時折、組成的証拠へのより高度な一般化が見られました。 事前学習では、モデルに仮説的なサブプルーフを作成させることはありません。具体的な例がないと、LLMsは特定の割引ルール(例:ケースによる証明や反証による証明など)を一般化することはできません。モデルのサイズとパフォーマンスの関係は弱いです。指導の調整とより長い事前学習により、より小さなモデル(最小ではなく比較可能なもの)がより大きなモデルと競合することができます。 ICLとCoTのトリガリングプロセスをさらに理解するために、研究者は今後の調査において重要な領域に注目しています。彼らは、最良のインコンテキストの例が、テスト例自体とは異なる分布から得られることを発見しました。ベイズ推論と勾配降下はこれを考慮していません。彼らは、テストケースがやや洗練されているにもかかわらず、よりシンプルな例がより良く機能するかどうかを調査することに興味を持っています。具体的なインスタンスからの外挿をさらに特徴づけるためには、追加の研究が必要です。
最新の技術を使用して、独自のオープンソースLLMを微調整する
以前の記事では、自分自身でLLMのトレーニングを考える理由を証明し始めましたまた、ハードウェア要件の簡単な紹介や最適化方法も提供しました...
スタンフォード大学とセールスフォースAIの研究者が「UniControl」という統合的な拡散モデルを発表:AI画像生成における高度な制御のための統一されたモデル
生成型の基礎モデルは、特定のタイプの入力データに似た新しいデータを生成するために設計された人工知能モデルのクラスです。これらのモデルは、自然言語処理、コンピュータビジョン、音楽生成など、さまざまな分野で使用されることがあります。彼らは、トレーニングデータから基礎となるパターンや構造を学び、その知識を使用して新しい似たようなデータを生成します。 生成型の基礎モデルは、画像合成、テキスト生成、推薦システム、薬物探索など、さまざまな応用があります。彼らは常に進化し、生成能力の向上、より多様で高品質な出力の生成、可制御性の向上、および使用に関連する倫理的な問題の理解など、その応用能力を向上させるために研究者が取り組んでいます。 Stanford大学、Northeastern大学、Salesforce AI研究所の研究者たちは、UniControlを開発しました。これは、野生での制御可能なビジュアル生成のための統一拡散モデルであり、言語とさまざまな視覚条件を同時に扱うことができます。UniControlは、複数のタスクを同時に処理し、さまざまな視覚条件をユニバーサルな表現空間にエンコードし、タスク間で共通の構造を探求する必要があります。UniControlは、他のタスクや言語プロンプトから幅広い視覚条件を受け取る必要があります。 UniControlは、視覚要素が主な役割を果たし、言語のプロンプトがスタイルと文脈を指示することにより、ピクセルパーフェクトな精度で画像の生成を提供します。研究チームは、UniControlがさまざまな視覚シナリオを管理する能力を向上させるために、事前学習されたテキストから画像への拡散モデルを拡大しました。さらに、彼らはタスクに関する認識能力を持つHyperNetを組み込み、異なる視覚条件に基づいて複数の画像生成タスクに適応することができるようにしました。 彼らのモデルは、ControlNetよりも3Dジオメトリガイドの深さマップや表面法線の微妙な理解を示しています。深さマップ条件により、より正確な出力が生じます。セグメンテーション、openpose、および物体のバウンディングボックスのタスク中、彼らのモデルによって生成された画像は、ControlNetによって生成された画像よりも与えられた条件によりよく整列し、入力プロンプトに対して高い忠実度を確保します。実験結果は、UniControlが同等のモデルサイズを持つ単一タスク制御法の性能をしばしば上回ることを示しています。 UniControlは、ControlNetのさまざまな視覚条件を統合し、新たに見たことのないタスクでゼロショット学習を実行することができます。現在のところ、UniControlは単一の視覚条件のみを受け入れるが、複数のタスクを同時に実行し、ゼロショット学習も可能です。これは、その汎用性と広範な採用の可能性を示しています。 ただし、彼らのモデルはまだ拡散ベースの画像生成モデルの制限を継承しています。具体的には、研究者のトレーニングデータはLaion-Aestheticsデータセットの一部から取得されたものであり、データバイアスがかかっています。UniControlは、バイアスのある、有毒な、性的な、または他の有害なコンテンツの作成をブロックするために、より良いオープンソースのデータセットが利用可能であれば改善することができます。
「非構造化データファンネル」
非構造化データはさまざまな形を取ります通常、テキストが主な要素ですが、日付、数値、辞書などのデータも含まれる場合がありますデータエンジニアは一般的に非構造化データに出くわしますが、その…
リトリーバル・オーグメンテッド・ジェネレーションを使用して、安定した拡散プロンプトを改善しましょう
テキストから画像を生成することは、メディアやエンターテイメント、ゲーム、ECサイトの商品ビジュアライゼーション、広告やマーケティング、建築設計やビジュアライゼーション、芸術創作、医療画像など、さまざまな分野で応用される急速に成長している人工知能の分野ですStable Diffusionは、数秒で高品質な画像を作成する力を与えるテキストから画像へのモデルです11月には[…]
『AWSプロトタイピングによるICL-GroupのAmazon SageMaker上でのコンピュータビジョンモデルの構築』
「これはICLとAWSの従業員が共同執筆した顧客投稿ですICLは、イスラエルに拠点を置く多国籍の製造および鉱業企業で、ユニークな鉱物に基づいた製品を製造し、主に農業、食品、エンジニアリング材料の三つの市場で人類の基本的なニーズを満たしています彼らの鉱山サイトでは、監視が必要な産業用機器が使用されています...」
オープンAIのイリヤ・サツキバーは、超知能AIを抑制するための計画を持っています
スーパーアライメントチームは、OpenAIのチーフサイエンティストであるイリヤ・サツケヴェルに率いられ、AIモデルの振る舞いをよりスマートにガイドする方法を考案しました
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.