Learn more about Search Results コンポーネント - Page 7

なぜAIチップの将来がニューロモーフィックコンピューティングにおいて重要なのか?

神経形態計算はAIとIoTを変革する可能性がありますより正確で多様性に富み、信頼性の高いアクセスしやすいAIの波を引き起こす可能性がありますが、依然として課題が残っています

グラフ、分析、そして生成AI グラフニュースレターの年

グラフ、分析、および生成AIグラフとAIが結びつくさまざまな方法と、業界と研究のニュースについての説明

「Googleが最新のAIモデルGeminiを発表」

Google DeepMindのCEO兼共同創設者であるデミス・ハサビスとGoogleのCEOサンダー・ピチャイは、待望のAIモデル「ジェミニ」を紹介しましたこのテックジャイアントのAIモデルは、人工知能の領域を再定義すると言われています同社のブログ投稿によれば、ジェミニは最先端の機能を提供し、OpenAIをも凌駕する可能性があると約束されています...

データのセキュリティとコラボレーションの強化:AWS Clean Roomsが機械学習と差分プライバシー機能を導入

Amazon Web Services(AWS)は、セキュアなデータ共有サービスであるClean Roomsの新しいアップデートを発表しました。このアップデートにより、最新の機械学習(ML)と差分プライバシー機能を組み込むことで、企業はセキュリティを強化し、機械学習モデルの活用とデータのプライバシー保護を両立させながら正確なデータ分析を推進することができます。 最新のClean Roomsでは、データプライバシーを強化しセキュアな共同作業を促進するさまざまな機能が追加されました。機械学習のサポートを組み込むことにより、オリジナルデータを公開することなくMLモデルを活用することができます。この革新的な機能により、機密情報を明かすことなく共同データ分析を行うことが可能となり、データプライバシーを重視する企業にとって大きな利点となります。 差分プライバシー機能もClean Roomsに統合されることで、データクエリの結果に適切にキャリブレートされたエラー(「ノイズ」とも呼ばれる)を組み込むことができます。これにより、個々のデータ貢献を曖昧化しながら分析の正確性を確保することができます。プライバシーバジェットコンポーネントを使用してプライバシーを有限のリソースとして取り扱うことにより、この機能はデータ漏洩を防ぎ、プライバシーリソースの枯渇や潜在的な侵害の回避に寄与します。 差分プライバシーは、特定の個人情報を漏洩することなく統計的パターンを明らかにする技術であり、AWS Clean Roomsはこの技術の適用を簡略化します。ユーザーは差分プライバシー機能を有効にし、共同作業の設定内でプライバシーポリシーを設定することで、このプライバシー強化技術を簡単に使用することができます。 今回のアップデートにおける画期的な機能であるClean Rooms MLにより、ユーザーは機械学習モデルを活用しながら機密データを保護することができます。この機能はさまざまな産業に適用され、ターゲットマーケティングの効果の高化、潜在的な顧客の特定、臨床研究の迅速化などを行う際に重要な情報を保護しながら支援します。 Clean Rooms MLの導入により、ユーザーはAWSによって管理されたモデルを組織内のデータ共有のコラボレーションにおいて訓練する必要がなくなります。このML機能のシームレスな統合により、ユーザーはモデルの予測を柔軟に制御し、分析において適応性と精度を確保することができます。 さらに、Clean Roomsではプライバシーコントロール機能も導入されており、適切な権限を持つClean Roomsメンバーが実行するクエリや出力を管理する権限を使用者に与えることができます。この追加のセキュリティレイヤーにより、コラボレーションエコシステム内のデータセキュリティとプライバシーの措置がさらに強化されます。 要するに、刷新されたAWS Clean Roomsは、セキュアなデータコラボレーションにおけるパラダイムシフトを象徴し、包括的なデータ分析の可能性を引き出しつつ、重要な情報の保護を重視しています。最新の機械学習と差分プライバシーの機能を組み合わせることで、AWSはデータセキュリティを確保しつつ分析の効率を高める道を開拓し、より安全で洞察に満ちた共同作業の未来を切り拓いています。 この記事の投稿は、Enhancing…

『NYU研究者が提案するGPQA 生物学、物理学、化学の3つの領域の専門家が作成した448の多肢選択問題からなる難解なデータセット』

大型言語モデル(LLM)は人工知能(AI)の最前線にあり、この急速に変化する分野で人間のスキルを凌駕する可能性を示しています。ただし、これらのモデルが超人的な能力に近づくにつれて、公正な評価や人間の理解に合わせることがより困難になります。この問題を解決することは、新しいAIシステムが正確な情報を提供することを保証するために不可欠であり、特に人間が検証できる真実が曖昧な問題において重要です。これはスケーラブルな監視として知られる問題です。 ロバストな評価のテストベッドは、これらのジョブのためのLLMの適合度を評価するために必要です。テストベッドは、特に人間が生成したデータや独立に検証された真実へのアクセスが制限されている場合に、これらのモデルから一貫して正確なデータを得る必要があります。そのようなテストベッドは、人間の知識の外の問題に対して一般化を可能にするために十分に困難でなければならず、高度に訓練された非専門家によるテストも可能にする必要があります。特に専門知識が必要な分野では、LLMの回答の正確さを評価することはより困難です。人間のフィードバックからの強化学習などの監視技術の主要なコンポーネントは、人間の注釈者がLLMの出力の正確さを評価する際の正確さです。ただし、注釈者が経験不足により正確さを区別しにくい場所では、モデルの回答における妄想や相場の悪化といった問題が悪化します。 これらの問題に対応するために、NYU、Cohere、Anthropicの研究者は、GPQA:卒業レベルのGoogle-Proof Q&Aベンチマークを提案します。GPQAは、生物学、化学、物理学の卒業レベルの多肢選択問題をカバーする評価データセットです。興味深いことに、GPQAは各質問に対して多くの時間を費やし、その質問をドメインの専門家や高度に訓練された非専門家と検証しています。これにより、問題がチャレンジングであることが保証されます。GPQAは、詳細な4つのステップの手順の結果です。質問はまず専門家によって開発され、その後他の人によって検証および修正されます。その後、2つの追加の専門家評価者が修正された質問を客観的に評価します。最終的に、各質問に時間をかけて回答する高資格の非専門家評価者がデータセットの複雑さを確認します。従業員のインセンティブは、すべてのレベルで優れた業績を認識し報酬を与えることを考慮して綿密に作成されています。 448の厳しいインスタンスを持つGPQAは、さえない最も先進的なAIシステムでも直面する課題を証明しています。最高のGPT-4ベースのモデルでも39%の正確性しか持ちませんが、専門家は65%、非専門家は34%に達します。これは、既存のモデルを凌駕する次世代モデルに対するスケーラブルな監視技術の研究にとって、このデータセットの価値を強調しています。重要性にもかかわらず、GPQAには非常に限られたモデルの訓練サイズと専門家選択におけるバイアスの可能性などの欠点があります。将来的には、監視データセットは超人的AI監視の標準として未解決の問題を見つけることを目指すかもしれません。これにより、モデルと人間の専門知識の知識ギャップが縮まります。 GPQAは、要求の高い分野で人工知能評価の最前線を拡大する先駆的な評価データセットとして機能します。その開発アプローチと検証技術は、スケーラブルな監視トライアルの洞察を提供することで、超人的なAIシステムの効率的な監視プロトコルの開発を容易にします。GPQAの開発は、AIシステムの評価を評価し、超人的モデルを人間の知識とより一致させることを目指しています。

ジェミニに会ってください:Googleの画期的なマルチモーダルAIモデルが人工知能の未来を再定義する

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-06-at-11.41.53-PM-1024×550.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-06-at-11.41.53-PM-150×150.png”/><p>Googleの最新の人工知能「ジェミニ」は、AI技術の大きな飛躍を表しています。驚くべき能力を持つAIモデルとして発表されたジェミニは、GoogleのAIファースト戦略に対する持続的な取り組みを証明しています。この開発は、Googleだけでなく、AIの広い領域において新たな可能性と改善をもたらします。それは、開発者、企業、そして世界中のエンドユーザーにとってのものです。</p><p>Google DeepMindとGoogle Researchの共同開発であるジェミニは、本来的にマルチモーダルな設計とされています。これは、テキスト、コード、音声、画像、動画など、さまざまな情報タイプを理解し、処理し、統合することができることを意味します。そのモデルのアーキテクチャは、データセンターからモバイルデバイスまで、さまざまなデバイスで効率的に動作することができ、その柔軟性と適応性を示しています。</p><p>ジェミニの最初のバージョンであるジェミニ1.0には、Gemini Ultra、Gemini Pro、Gemini Nanoの3つのバリアントがあります。それぞれのバリアントは、特定のユースケースに最適化されています:</p><ol><li><strong>Gemini Ultra</strong>:高度に複雑なタスクに最適化された最も包括的なモデルです。さまざまな学術ベンチマークで優れたパフォーマンスを発揮し、32のベンチマーク中30のベンチマークで現在の最先端の結果を上回っています。特に、複数のドメインでの知識と問題解決をテストするMassive Multitask Language Understanding (MMLU)では、人間の専門家を超える最初のモデルです。</li><li><strong>Gemini Pro</strong>:幅広いタスクにスケーリングするための最適なモデルとされており、能力と汎用性のバランスを提供します。</li><li><strong>Gemini Nano</strong>:オンデバイスのタスクに最適化された、最も効率的でモバイルデバイスや類似のプラットフォームに適したバージョンです。</li></ol><figure></figure><p>ジェミニの重要な強みの一つは、洗練された推論能力です。このモデルは、複雑な文章や視覚情報を分析し解釈することができるため、広範なデータセットに隠された知識を解き放つのに特に優れています。この能力は、科学や金融などさまざまな分野でのブレークスルーを促進することが期待されています。</p><p>コーディングの観点では、ジェミニ・ウルトラは驚異的な能力を発揮します。複数のプログラミング言語で高品質のコードを理解し説明、生成することができるため、コーディングのためのリーディングなファウンデーションモデルの一つとなっています。</p><figure><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-06-at-11.44.02-PM-1024×891.png”/><figcaption>https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf</figcaption></figure><p>ただし、ジェミニは単一のモデルではなく、異なるニーズと計算環境に対応するために設計されたモデルのファミリーです。これは、通常、異なるモーダリティのために別々のコンポーネントをトレーニングしてからそれらを結合するという従来のマルチモーダルモデルの方法からの脱却を示しています。代わりに、ジェミニは最初からネイティブでマルチモーダルなので、さまざまな情報のよりシームレスで効果的な統合が可能です。</p><p>まとめると、Googleのジェミニは、AIの領域における重要な進歩を表しています。そのマルチモーダルの能力、柔軟性、最先端のパフォーマンスは、幅広いアプリケーションにおいて強力なツールとなります。このモデルはGoogleの野心と責任あるAI開発への取り組みを反映し、ますます高度なAIシステムの社会的および倫理的な影響を考慮しながら、可能性の限界を広げています。</p>

「Hill Climbing Algorithm in AIとは何ですか?」

はじめに 人工知能(AI)の複雑な世界では、ヒルクライミングアルゴリズムが問題解決のための基本的な手法として登場します。この技術は、比喩的な山の登りと同様に、AIの最適化問題の複雑な地形を航海するために重要です。それは多くの可能性の中から最も効果的な解を見つける戦略的なアプローチであり、さまざまなAIアプリケーションの基盤となるものです。 ヒルクライミングアルゴリズムはどのように動作するのですか? ヒルクライミングアルゴリズムは、山の麓に立っているかのような基点から始まり、隣接する解を反復的に探索します。次の最善のステップを評価する登攀者のように、各アルゴリズムの移動は目的関数に対して精査される増分の変化です。この関数はアルゴリズムをピークに向かって導き、進行を保証します。 たとえば、迷路解決アプリケーションが素晴らしい例です。このシナリオでは、アルゴリズムが実行する各ステップは、迷路内での戦略的な動きを表し、出口への最短経路を目指します。アルゴリズムは各ポテンシャルステップを評価し、出口に近づける効果を測定します。これは、山の頂上に近づけるどのステップが登攀者を高めるかを考える登山者に似ています。 出典: Javapoint ヒルクライミングアルゴリズムの特徴 ヒルクライミングアルゴリズムの主な特徴は次のとおりです: 生成と試行アプローチ:この特徴は、隣接する解を生成し、その効果を評価し、常に解空間で上昇することを目的としています。 グリーディローカルサーチ:このアルゴリズムは、即座のメリットがある動きを選択し、ローカルな改善を約束する安価な戦略を使用します。 バックトラッキングしない:他のアルゴリズムとは異なり、ヒルクライミングは以前の決定を再訪したり再考したりせず、最適解を探求するために進んで進みます。 ヒルクライミングアルゴリズムの種類 ヒルクライミングアルゴリズムにはさまざまな形式があり、それぞれ特定のシナリオに適しています: 単純なヒルクライミング このバージョンでは、隣接する解を評価し、現在の状態を改善する最初の解を選択します。たとえば、配送ルートの最適化では、最初の代替ルートを選択し、配送時間を短縮する場合でも、最適ではないとしても選択します。 アルゴリズム: ステップ 1:初期状態で開始します。 ステップ 2:初期状態が目標であるかどうかをチェックします。目標であれば、成功を返して終了します。 ステップ 3:改善された状態を連続的に探索するループに入ります。 ループ内で、現在の状態にオペレータを適用して隣接状態を選択します。…

「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」

会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]

「Q4 Inc.が、Q&Aチャットボットの構築において、数値と構造化データセットの課題に対処するために、Amazon Bedrock、RAG、およびSQLDatabaseChainを使用した方法」

この投稿は、Q4 Inc.のスタニスラフ・エシェンコと共同執筆されました企業は、問答型チャットボットを構築する主流アプローチとして、Retrieval Augmented Generation(RAG)に注目しています利用可能なデータセットの性質から生じる新たな課題が引き続き現れていることを確認していますこれらのデータセットは、しばしば数値とテキストデータの混合であり、時には構造化されています

言語モデルを使用したドキュメントの自動要約のテクニック

要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us