Learn more about Search Results もっと詳しく - Page 7
- You may be interested
- ジュネーブ大学の研究者は、多剤耐性(MDR...
- クラスタリングアルゴリズムへの導入
- 「AIを使用して気候変動と戦う」
- 「なぜ80%の企業のAI/ML導入が失敗するのか」
- 「アレクサ、学生たちは A.I. について何...
- アルゴリズム取引と金融におけるAIにおけ...
- AIコンテンツ検出機はどのように機能する...
- WhatsAppチャットで言語モデルを構築しま...
- 「自律ロボット研究所によって発見された...
- 制限から自由:MoMAでのマシン幻覚の検証
- 「依存関係の解明と因果推論および因果検...
- 「ビジョン・ランゲージの交差点でのブレ...
- AudioLDM 2, でも速くなりました ⚡️
- AIによるテキストメッセージングの変革:...
- 「ICML 2023でのGoogle」
インデータベース分析:SQLの解析関数の活用
次のレベルにデータ分析スキルを活用するために、RANK()、NTILE()、CUME_DIST()などのさまざまなSQL分析関数について学びましょう
合成データのフィールドガイド
データを扱いたい場合、どのような選択肢がありますか?できるだけざっくりした回答をお伝えします実際のデータを入手するか、偽のデータを入手するかのどちらかです前回の記事では、私たちは...
テキストブック品質の合成データを使用して言語モデルをトレーニングする
マイクロソフトリサーチは、データの役割についての現在進行中の議論に新たな燃料を加える論文を発表しました具体的には、データの品質と合成データの役割に触れています
グリーンAI:AIの持続可能性を向上させるための方法とソリューション
もし、あなたがこの記事を開いたのであれば、おそらく現在の大規模言語モデル(LLM)の安全性と信頼性に関する現在の論争について聞いたことがあるでしょう有名な人々によって署名された公開書簡...
新しいAIモデル、たった30BパラメーターでGPT-3を凌駕する
世界的に有名なオープンソース言語モデル(LLMs)プロバイダーであるMosaicMLは、最新世代のNVIDIA H100アクセラレータを搭載した画期的なMPT-30Bモデル、すなわちBase、Instruct、Chatを発表しました。これらの最新鋭モデルは、元のGPT-3に比べて品質が大幅に向上しています。 また読む: Large Language Models(LLMs)とは何ですか? MPT-7Bの前例のない成功とMPT-30Bへの進化 2023年5月のリリース以来、MPT-7Bモデルは、330万ダウンロードという驚異的な数字を叩き出し、業界を席巻しています。この成功を更に広げるため、MosaicMLは、非常に期待されていたMPT-30Bモデルをリリースしました。これにより、様々なアプリケーションで新しい可能性が開け、更なる高みに到達しました。 MPT-30Bの無比な機能 MPT-30Bの最も注目すべき成果の1つは、たった30億のパラメータで、GPT-3の175億のうちの一部を使用して、GPT-3を超える品質を実現することができたことです。この画期的なパラメータ数の削減により、MPT-30Bは、ローカルハードウェアの導入にもよりアクセスしやすくなり、推論のコストも大幅に削減されます。さらに、MPT-30Bをベースにしたカスタムモデルのトレーニングに関連する費用は、オリジナルのGPT-3をトレーニングする見積もりよりも明らかに低くなっており、企業にとって魅力的な選択肢となっています。 もっと詳しく知る:実際のユースケースに向けたGPT3の大規模言語モデルのカスタマイズ さらに、MPT-30Bのトレーニングには、最大8,000トークンの長いシーケンスが含まれており、データ重視のエンタープライズアプリケーションを処理できるようになっています。これは、NVIDIAのH100 GPUを利用して、優れたスループットと高速なトレーニング時間を実現しています。 また読む:中国の強力なNvidia AIチップの隠された市場 MPT-30Bの無限のアプリケーションを探る 多くのビジョンを持った企業が、MosaicMLのMPTモデルを活用し、AIアプリケーションを革新しています。 先進的なWebベースのIDEであるReplitは、MosaicMLのトレーニングプラットフォームを活用して、優れたコード生成モデルを構築することに成功しました。Replitは、独自のデータを活用することで、コードの品質、スピード、コスト効率を著しく向上させました。 チャットボットの開発に特化した革新的なAIスタートアップであるScatter Labは、MosaicMLの技術を活用して独自のMPTモデルをトレーニングしました。その結果、英語と韓国語の両方を理解できる多言語の生成AIモデルが作成され、広範なユーザーベースのチャット体験を大幅に向上させました。 世界的に有名な旅行費用管理ソフトウェア会社であるNavanは、MPTが提供する堅牢な基盤を活用して、バーチャルトラベルエージェントや会話型ビジネスインテリジェンスエージェントなどの最新アプリケーションにカスタマイズされたLLMsを開発しています。Navanの共同創設者兼CTOであるIlan Twig氏は、MosaicMLの基礎モデルが、際立った効率性とスケールでの推論を提供すると同時に、非常に優れた言語能力を提供していると熱狂的に称賛しています。 もっと詳しく知る:AIの力を活用するビジネスリーダーには、DataHack Summit…
Rendered.aiは、合成データの生成にNVIDIA Omniverseを統合します
Rendered.aiは、プラットフォームとして提供される合成データ生成(SDG)により、開発者、データサイエンティスト、その他の人々のAIトレーニングを簡素化しています。 コンピュータビジョンAIモデルのトレーニングには、膨大で高品質で多様で偏りのないデータセットが必要です。これらを入手することは困難でコストがかかるため、AIの需要と供給の双方が増大する中で特に課題になります。 Rendered.aiのプラットフォームは、3Dシミュレーションから作成された物理的に正確な合成データを生成することにより、コンピュータビジョンモデルのトレーニングに役立ちます。 「実世界のデータは、AIモデルを一般化するために必要なすべてのシナリオとエッジケースをキャプチャできないことがあり、それがAIおよび機械学習エンジニアにとってキーとなるSDGの場所です」と、シアトルの郊外であるベルビューに拠点を置くRendered.aiの創設者兼CEOであるNathan Kundtzは述べています。 NVIDIA Inceptionプログラムの一員であるRendered.aiは、オンライントレーニング、ロボティクス、自律走行などの多くのアプリケーションにラベル付き合成データを生成することができるOmniverse Replicatorをプラットフォームに統合しました。 Omniverse Replicatorは、Universal Scene Description(「OpenUSD」)、Material Definition Language(MDL)、およびPhysXを含む3Dワークフローのオープンスタンダードに基づいて構築され、仮想世界の風景と植生のモデリング、衛星画像のオブジェクト検出、さらには人間の卵細胞の生存可能性のテストに使用されています。 Omniverse Replicatorを使用して生成された合成画像。Rendered.ai提供。 Rendered.aiは、Omniverse ReplicatorのRTXアクセラレーション機能を活用することで、レイトレーシング、ドメインランダム化、マルチセンサーシミュレーションなどの機能を利用することができます。コンピュータビジョンエンジニア、データサイエンティスト、およびその他のユーザーは、クラウド上の簡単なウェブインターフェイスを介して合成データを迅速かつ簡単に生成することができます。 「AIをトレーニングするために持つ必要があるデータは、実際にAIのパフォーマンスを支配する要因です」とKundtzは述べています。「Omniverse ReplicatorをRendered.aiに統合することで、さまざまな産業分野でより大きく、より優れたAIモデルをトレーニングするために合成データを利用するユーザーにとって、新しいレベルの簡単さと効率が実現されます。」 Rendered.aiは、カナダのバンクーバーで6月18日から22日まで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVPR)で、Omniverse Replicatorとのプラットフォーム統合をデモンストレーションします。 クラウドでの合成データ生成 AWS…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.