Learn more about Search Results VICE - Page 79

SiMa.aiが世界最強のAIチップをインドに持ち込む

アメリカのAIチップスタートアップ、SiMa.aiは、初代AIチップの量産を発表し、画期的な進展を遂げました。TSMC 16nmテクノロジーを利用し、SiMa.aiは産業界にAI革命をもたらすことを目的としています。一般的な手法が一つのチップで全てを対応するのに対し、SiMa .aiのMLSoC(Chip on a Machine Learning System)はエッジコンピューティングに特化して設計されています。この重要な進展により、産業分野において転換期を迎えることになります。 同様に読まれている記事:台湾企業が現代AIのバックボーンになった経緯 AIと機械学習で産業界を21世紀に引き上げる 創設者兼CEOのKrishna Rangasayee氏は、AIと機械学習によって物理的な世界に大きな改善がもたらされる可能性に興奮しています。SiMa.aiは、最先端の技術で産業界を21世紀に導くことを目指しています。彼らのビジョナリーなアプローチは、スマートカー、ドローン、高度なロボットなど多岐にわたる分野での革新を促進することを目的としています。 同様に読まれている記事:DeepMind RoboCat: 自己学習型ロボットAIモデル SiMa.aiが生成AI埋め込みエッジの未来に備える Rangasayee氏は声明で、SiMa.aiが生成AI埋め込みエッジの未来に備えていることを明らかにしました。クラウド、エッジ、またはモバイル電話の空間で作業しているかどうかに関係なく、生成AIと大規模言語モデル(LLM)が誰の革新にとっても不可欠なものになると信じているRangasayee氏は、これらの技術を採用することの重要性を強調しました。SiMa.aiの生成AIを先駆的に推進する取り組みは、産業界を革新する先見性のあるアプローチを示しています。 埋め込みエッジスペースにおける生成AIの台頭 生成AIは、近年著しい進展を遂げ、現在は埋め込みエッジスペースへ進出しています。Rangasayee氏は、生成AIがエンタープライズやエッジアプリケーションを含む実世界のアプリケーションへ移行していることに興味を持っています。生成AIの認知度と採用の拡大に伴い、この技術の変革的なポテンシャルはますます明らかになっています。生成AIの影響は急速に拡大し、世界中の10億人を魅了し、産業を再構築しています。 詳しくはこちら:DataHack Summit 2023にて、Diffusion Modelsによる生成AIの無限の世界を学ぶ非凡な学習体験に参加してください。 AIエッジデバイス上でLLMを実行することは有望なトレンド…

AWS CDKを介してAmazon SageMakerロールマネージャーを使用して、カスタム権限を数分で定義します

機械学習(ML)の管理者は、MLワークロードのセキュリティと完全性を維持する上で重要な役割を果たしています彼らの主な焦点は、ユーザーが最高のセキュリティで操作し、最小特権の原則に従うことを確認することですただし、異なるユーザーペルソナの多様なニーズに対応し、適切な許可ポリシーを作成することは、時にアジリティを妨げることがあります[…]

AIを活用した言語学習アプリの構築:2つのAIチャットからの学習

新しい言語を学び始めるときは、私は「会話ダイアログ」の本を買うのが好きです私はそのような本が非常に役立つと思っていますそれらは、言語がどのように動作するかを理解するのに役立ちます単に…

メタAIのもう一つの革命的な大規模モデル — 画像特徴抽出のためのDINOv2

Mete AIは、画像から自動的に視覚的な特徴を抽出する新しい画像特徴抽出モデルDINOv2の新バージョンを紹介しましたこれはAIの分野でのもう一つの革命的な進歩です...

事前学習済みのViTモデルを使用した画像キャプショニングにおけるVision Transformer(ViT)

はじめに 事前学習済みのViTモデルを使用した画像キャプショニングは、画像の詳細な説明を提供するために画像の下に表示されるテキストまたは書き込みのことを指します。つまり、画像をテキストの説明に翻訳するタスクであり、ビジョン(画像)と言語(テキスト)を接続することで行われます。この記事では、PyTorchバックエンドを使用して、画像のViTを主要な技術として使用して、トランスフォーマーを使用した画像キャプショニングの生成方法を、スクラッチから再トレーニングすることなくトレーニング済みモデルを使用して実現します。 出典: Springer 現在のソーシャルメディアプラットフォームや画像のオンライン利用の流行に対応するため、この技術を学ぶことは、説明、引用、視覚障害者の支援、さらには検索エンジン最適化といった多くの理由で役立ちます。これは、画像を含むプロジェクトにとって非常に便利な技術であります。 学習目標 画像キャプショニングのアイデア ViTを使用した画像キャプチャリング トレーニング済みモデルを使用した画像キャプショニングの実行 Pythonを使用したトランスフォーマーの利用 この記事で使用されたコード全体は、このGitHubリポジトリで見つけることができます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 トランスフォーマーモデルとは何ですか? ViTについて説明する前に、トランスフォーマーについて理解しましょう。Google Brainによって2017年に導入されて以来、トランスフォーマーはNLPの能力において注目を集めています。トランスフォーマーは、入力データの各部分の重要性を異なる重み付けする自己注意を採用して区別されるディープラーニングモデルです。これは、主に自然言語処理(NLP)の分野で使用されています。 トランスフォーマーは、自然言語のようなシーケンシャルな入力データを処理しますが、トランスフォーマーは一度にすべての入力を処理します。注意機構の助けを借りて、入力シーケンスの任意の位置にはコンテキストがあります。この効率性により、より並列化が可能となり、トレーニング時間が短縮され、効率が向上します。 トランスフォーマーアーキテクチャ 次に、トランスフォーマーのアーキテクチャの構成を見てみましょう。トランスフォーマーアーキテクチャは、主にエンコーダー-デコーダー構造から構成されています。トランスフォーマーアーキテクチャのエンコーダー-デコーダー構造は、「Attention Is All You Need」という有名な論文で発表されました。 エンコーダーは、各レイヤーが入力を反復的に処理することを担当し、一方で、デコーダーレイヤーはエンコーダーの出力を受け取り、デコードされた出力を生成します。単純に言えば、エンコーダーは入力シーケンスをシーケンスにマッピングし、それをデコーダーに供給します。デコーダーは、出力シーケンスを生成します。 ビジョン・トランスフォーマーとは何ですか?…

Mr. Pavan氏のデータエンジニアリングの道は、ビジネスの成功を導く

はじめに 私たちは、Pavanさんから学ぶ素晴らしい機会を得ました。彼は問題解決に情熱を持ち、持続的な成長を追求する経験豊富なデータエンジニアです。会話を通じて、Pavanさんは自身の経験、インスピレーション、課題、そして成し遂げたことを共有しています。そのため、データエンジニアリングの分野における貴重な知見を提供してくれます。 Pavanさんの実績を探索する中で、再利用可能なコンポーネントの開発、効率化されたデータパイプラインの作成、グローバルハッカソンの優勝などに誇りを持っていることがわかります。彼は、データエンジニアリングを通じてクライアントのビジネス成長を支援することに情熱を注いでおり、彼の仕事が彼らの成功に与える影響について共有してくれます。さあ、Pavanさんの経験と知恵から学んで、データエンジニアリングの世界に没頭しましょう。 インタビューを始めましょう! AV:自己紹介と経歴について教えてください。 Pavanさん:私は情報技術の学生として学問の道を歩み始めました。当時、この分野での有望な求人が私を駆り立てていました。しかし、私のプログラミングに対する見方はMSハッカソン「Yappon!」に参加した時に変わりました。その経験が私に深い情熱をもたらしました。それは私の人生の転機となり、プログラミングの世界をより深く探求するスパークを生み出しました。 それ以来、私は4つのハッカソンに積極的に参加し、うち3つを優勝するという刺激的な結果を残しました。これらの経験は私の技術的なスキルを磨き、タスクの自動化や効率的な解決策の探求に執念を燃やすようになりました。私はプロセスの効率化や繰り返しタスクの削減に挑戦することで成長しています。 個人的には、私は内向的と外向的のバランスを取るambivertだと考えています。しかし、私は常に自分の快適ゾーンから踏み出して、成長と発展のための新しい機会を受け入れるように自分自身を鼓舞しています。プログラミング以外の私の情熱の1つはトレッキングです。大自然を探索し、自然の美しさに浸ることには魅力的な何かがあります。 私のコンピュータサイエンス愛好家としての旅は、仕事の見通しに対する実用的な見方から始まりました。しかし、ハッカソンに参加することで、プログラミングに対する揺るぎない情熱に変わっていきました。成功したプロジェクトの実績を持ち、自動化の才能を持っていることから、私はスキルを拡大し、コンピュータサイエンス分野での積極的な貢献を続けることを熱望しています。 AV:あなたのキャリアに影響を与えた人物を数名挙げて、どのように影響を受けたか教えてください。 Pavanさん:まず、私は母親と祖母に感謝しています。彼女たちはサンスクリットの格言「Shatkarma Manushya yatnanam, saptakam daiva chintanam.」に象徴される価値観を私に教えてくれました。人間の努力と精神的な瞑想の重要性を強調したこの哲学は、私のキャリアを通じて指導原理となっています。彼女たちの揺るぎないサポートと信念は、私の常に刺激となっています。 また、私のB.Tech時代に教授だったSmriti Agrawal博士にも大きな成長を感じています。彼女はオートマトンとコンパイラ設計を教えながら、その科目についての深い理解を伝え、キャリア開発の重要性を強調しました。「6ヶ月で履歴書に1行も追加できない場合は、成長していない」という彼女の有益なアドバイスは、私のマインドセットを変えるきっかけになりました。このアドバイスは、私に目標を設定し、挑戦的なプロジェクトに取り組み、定期的にスキルセットを更新するよう駆り立て、私を常に成長と学びの機会に導いてくれました。 さらに、私にとって支援的な友人のネットワークを持っていることは幸運なことです。彼らは私のキャリアの旅において重要な役割を果たしています。彼らは、複雑なプログラミングの概念を理解するのを手伝ってくれたり、私をハッカソンに参加させてスキルを磨いたりすることで、私を引っ張り出し、最高の自分を引き出すのに欠かせない存在となっています。彼らの指導と励ましは、私を常に限界を超えて、最高の自分を引き出すのに不可欠であり、私の今までの進歩に欠かせません。 AV:なぜデータと一緒に働くことに興味を持ち、データエンジニアとしての役割の中で最もエキサイティングなことは何ですか? Pavanさん:私がデータと一緒に働くことに惹かれたのは、データが今日の世界であらゆるものを動かしていることを認識したからです。データは、意思決定の基盤であり、戦略の策定、革新の源泉です。データを生のままから意味のある洞察に変換し、それらの洞察を顧客やビジネスの成功につなげることが、私がデータと一緒に働くことに情熱を持つようになった原動力となりました。 データエンジニアとして私が最も興奮するのは、データ革命の最前線に立つ機会です。膨大な量の情報を効率的に収集、処理、分析するデータシステムを設計・実装する複雑なプロセスに魅了されています。データの膨大な量と複雑さは、創造的な問題解決と継続的な学習を必要とする刺激的な課題を提供します。 データエンジニアとして最もエキサイティングな側面の1つは、データの潜在的な可能性を引き出すことができることです。堅牢なパイプラインを構築し、高度な分析を実装し、最新技術を活用することで、情報を収集し、意思決定を支援し、変革につながる貴重な洞察を明らかにすることができます。データ駆動型のソリューションが直接顧客体験を改善し、業務効率を向上させ、ビジネス成長を促進する様子を見ることは、非常にやりがいを感じます。 また、この分野のダイナミックな性質は私を引っ張っていきます。データエンジニアリング技術と技法の急速な進歩は、常に新しいイノベーションの機会を提供してくれます。これらの進歩の最前線に立ち、継続的に学習し、スキルを磨き、複雑なデータ課題を解決するために適用することは、知的好奇心を刺激し、専門的にもやりがいを感じさせます。…

FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します

データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...

Light & WonderがAWS上でゲーミングマシンの予測保守ソリューションを構築した方法

この記事は、ライトアンドワンダー(L&W)のアルナ・アベヤコーン氏とデニス・コリン氏と共同執筆したものですライトアンドワンダーは、ラスベガスを拠点とするクロスプラットフォームゲーム会社であり、ギャンブル製品やサービスを提供していますAWSと協力して、ライトアンドワンダーは最近、業界初の安全なソリューション「Light & Wonder Connect(LnW Connect)」を開発しました[…]

Google Cloudがマッコーリー銀行のAIバンキング機能を強化するのを支援します

マッコーリーのバンキング&金融サービスグループは、人工知能(AI)と機械学習(ML)の力を結集し、銀行業界を変革するためにGoogle Cloudと協力しています。このパートナーシップは、予測分析モデルを開発し、自動化を通じて銀行業務を効率化することで、顧客の銀行体験を向上させることを目的としています。イノベーションに共通するビジョンを持つマッコーリーとGoogle Cloudは、世界中の銀行の顧客にシームレスで直感的なパーソナライズされたデジタル体験を提供することを目指しています。 マッコーリーの技術革新とデジタルトランスフォーメーション マッコーリー銀行は、銀行業界での技術革新の最前線に立ってきました。過去10年間で、同銀行はクラウドファーストで完全にデジタルの小売銀行プラットフォームの構築に大きな投資をしてきました。技術スタックを活用し、Google Cloudとパートナーシップを結ぶことで、マッコーリーはデジタルおよびデータプラットフォーム全体にAIを導入することが可能になりました。これにより、AI&ML対応の機能を統合することで、すべての個人向け銀行の顧客に向けて強化されたデジタル体験を提供することができるようになりました。 関連記事:2023年の銀行業界における機械学習とAIの応用 Google Cloudがマッコーリーのデジタルインフラストラクチャーにおける重要な役割 Google Cloudは、マッコーリー銀行のデジタル顧客インターフェースおよびプロセスのバックボーンです。同銀行は、Google Cloudを戦略的かつ分析的なデータプラットフォームやMLベースのアプリケーションに頼っています。Google Cloudの機能を活用することで、マッコーリーはAI&MLをデジタルバンキングおよびテクノロジーエコシステムに組み込むことに成功しました。これにより、運営面と顧客体験インターフェースの両方が強化されました。同銀行は、1日あたり10億件以上の取引を分析し、顧客に直感的な機能を提供するためにAIとMLモデルを使用しています。 マッコーリーのデジタルバンキングにおける変革的なAIおよびML対応機能 マッコーリーとGoogle Cloudの協力により、マッコーリーのデジタルバンキングサービスには、AI&ML対応のさまざまな機能が導入されます。これらの機能は、顧客の銀行体験をさらに向上させ、パーソナライズされたアプローチで積極的な金融ソリューションを提供することを目的としています。以下は、導入される主要な機能のいくつかです。 1. キャッシュフロー予測機能 Google CloudのBigQueryを使用して、マッコーリーのキャッシュフロー予測機能では、顧客の12か月後の個人的なキャッシュフローの予測を提供します。この強力なツールは、顧客のキャッシュフローがマイナスになることが予想される場合に積極的なプロンプトを提供することさえ可能です。これにより、顧客は情報に基づいた金融決定を行うことができます。 2. 転送予測 BigQueryを使用して、マッコーリーは以前および今後の転送を分析し、期日や関連情報を予測、通知、およびリマインドすることができます。この機能により、顧客は自分の金融コミットメントを把握し、支払いを見落とすことや取引を見過ごすことのリスクを減らすことができます。 3.…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us