Learn more about Search Results リポジトリ - Page 79

Hugging Face Hubへようこそ、PaddlePaddleさん

私たちは、オープンソースのコラボレーションをHugging FaceとPaddlePaddleの間で共有し、オープンソースを通じてAIの進歩と民主化を推進する共通の使命を喜んで共有します! 2016年にBaiduによって最初にオープンソース化されたPaddlePaddleは、スキルレベルに関係なく、開発者がディープラーニングをスケールで採用および実装できるようにします。2022年第4四半期現在、PaddlePaddleは500万人以上の開発者と20万社以上の企業によって使用されており、中国のディープラーニングプラットフォームの中で市場シェア第1位です。PaddlePaddleには、Paddle Deep Learning Framework、さまざまなモダリティのモデルライブラリ(例:PaddleOCR、PaddleDetection、PaddleNLP、PaddleSpeech)、モデル圧縮のためのPaddleSlim、モデル展開のためのFastDeployなど、人気のあるオープンソースのリポジトリがあります。 PaddleNLPが先導する中、PaddlePaddleはHugging Face Hubとそのライブラリを徐々に統合していく予定です。近々、テキスト、画像、音声、ビデオ、マルチモダリティの豪華な事前学習済みPaddlePaddleモデルのフルスイートをHubでお楽しみいただけるようになります! PaddlePaddleモデルの検索 PaddlePaddleモデルは、PaddlePaddleライブラリタグでフィルタリングすることで、モデルハブで見つけることができます。 既にハブには75以上のPaddlePaddleモデルがあります。例えば、マルチタスク情報抽出モデルシリーズUIE、最先端の中国語言語モデルERNIE 3.0モデルシリーズ、全ワークフローにおけるレイアウト知識強化のための革新的なドキュメントプレトレーニングモデルErnie-Layoutなどがあります。 HuggingFace HubのPaddlePaddle orgもぜひご覧ください。上記のモデルに加えて、テキストからイメージへの変換Ernie-ViLG、クロスモーダル情報抽出エンジンUIE-X、素晴らしいマルチリンガルOCRツールキットPaddleOCRなど、さまざまなスペースを探索することもできます。 推論APIとウィジェット PaddlePaddleモデルは、HTTPを介してcURL、Pythonのrequestsライブラリ、またはネットワークリクエストを行うためのご希望の方法でアクセスできる推論APIを通じて利用できます。 タスクをサポートするモデルには、ブラウザで直接モデルを操作できるインタラクティブなウィジェットが備わっています。 既存のモデルの使用 特定のモデルを読み込む方法を確認したい場合は、Use in paddlenlp(または将来の他のPaddlePaddleライブラリ)をクリックすると、それを読み込むための動作するスニペットが表示されます! モデルの共有…

Optimum+ONNX Runtime – Hugging Faceモデルのより簡単で高速なトレーニング

はじめに 言語、ビジョン、音声におけるトランスフォーマーベースのモデルは、複雑なマルチモーダルのユースケースをサポートするためにますます大きくなっています。モデルのサイズが増えるにつれて、これらのモデルをトレーニングし、サイズが増えるにつれてスケーリングするために必要なリソースにも直接的な影響があります。Hugging FaceとMicrosoftのONNX Runtimeチームは、大規模な言語、音声、ビジョンモデルのファインチューニングにおいて進歩をもたらすために協力しています。Hugging FaceのOptimumライブラリは、ONNX Runtimeとの統合により、多くの人気のあるHugging Faceモデルのトレーニング時間を35%以上短縮するオープンなソリューションを提供します。本稿では、Hugging Face OptimumとONNX Runtimeトレーニングエコシステムの詳細を紹介し、Optimumライブラリの利点を示すパフォーマンスの数値を提示します。 パフォーマンスの結果 以下のチャートは、Optimumを使用したHugging Faceモデルのパフォーマンスを示しており、トレーニングにONNX RuntimeとDeepSpeed ZeRO Stage 1を使用することで、39%から130%までの印象的な高速化が実現されています。パフォーマンスの測定は、ベースライン実行としてPyTorchを使用した選択されたHugging Faceモデルで行われ、2番目の実行ではトレーニングのためにONNX Runtimeのみを使用し、最終的な実行ではONNX Runtime + DeepSpeed ZeRO Stage…

効率的で安定した拡散微調整のためのLoRAの使用

LoRA:Large Language Modelsの低ランク適応は、Microsoftの研究者によって導入された新しい技術で、大規模言語モデルの微調整の問題に取り組むためのものです。GPT-3などの数十億のパラメータを持つ強力なモデルは、特定のタスクやドメインに適応させるために微調整することが非常に高価です。LoRAは、事前学習済みモデルの重みを凍結し、各トランスフォーマーブロックにトレーニング可能な層(ランク分解行列)を注入することを提案しています。これにより、トレーニング可能なパラメータとGPUメモリの要件が大幅に削減されます。なぜなら、ほとんどのモデルの重みの勾配を計算する必要がないからです。研究者たちは、大規模言語モデルのトランスフォーマーアテンションブロックに焦点を当てることで、LoRAと完全なモデルの微調整と同等の品質を実現できることを発見しました。さらに、LoRAはより高速で計算量が少なくなります。 DiffusersのためのLoRA 🧨 LoRAは、当初大規模言語モデルに提案され、トランスフォーマーブロック上でデモンストレーションされたものですが、この技術は他の場所でも適用することができます。Stable Diffusionの微調整の場合、LoRAは画像表現とそれらを説明するプロンプトとの関連付けを行うクロスアテンションレイヤーに適用することができます。以下の図(Stable Diffusion論文から引用)の詳細は重要ではありませんが、黄色のブロックが画像とテキスト表現の関係を構築する役割を担っていることに注意してください。 私たちの知る限りでは、Simo Ryu(@cloneofsimo)がStable Diffusionに適応したLoRAの実装を最初に考案しました。興味深いディスカッションや洞察がたくさんあるGitHubのプロジェクトをご覧いただくために、彼らのGitHubプロジェクトをぜひご覧ください。 クロスアテンションレイヤーにLoRAトレーニング可能行列を深く注入するために、以前はDiffusersのソースコードを工夫(しかし壊れやすい方法)してハックする必要がありました。Stable Diffusionが私たちに示してくれたことの一つは、コミュニティが常に創造的な目的のためにモデルを曲げて適応する方法を見つけ出すことです。クロスアテンションレイヤーを操作する柔軟性を提供することは、xFormersなどの最適化技術を採用するのが容易になるなど、他の多くの理由で有益です。Prompt-to-Promptなどの創造的なプロジェクトには、これらのレイヤーに簡単にアクセスできる方法が必要です。そのため、ユーザーがこれを行うための一般的な方法を提供することにしました。私たちは昨年12月末からそのプルリクエストをテストしており、昨日のdiffusersリリースと共に公式にローンチしました。 私たちは@cloneofsimoと協力して、Dreamboothと完全な微調整方法の両方でLoRAトレーニングサポートを提供しています!これらの技術は次の利点を提供します: 既に議論されているように、トレーニングがはるかに高速です。 計算要件が低くなります。11 GBのVRAMを持つ2080 Tiで完全な微調整モデルを作成できました! トレーニングされた重みははるかに小さくなります。元のモデルが凍結され、新しいトレーニング可能な層が注入されるため、新しい層の重みを1つのファイルとして保存できます。そのサイズは約3 MBです。これは、UNetモデルの元のサイズの約1000分の1です。 私たちは特に最後のポイントに興奮しています。ユーザーが素晴らしい微調整モデルやドリームブーストモデルを共有するためには、最終モデルの完全なコピーを共有する必要がありました。それらを試すことを望む他のユーザーは、お気に入りのUIで微調整された重みをダウンロードする必要があり、膨大なストレージとダウンロードコストがかかります。現在、Dreamboothコンセプトライブラリには約1,000のDreamboothモデルが登録されており、おそらくさらに多くのモデルがライブラリに登録されていません。 LoRAを使用することで、他の人があなたの微調整モデルを使用できるようにするためのたった1つの3.29 MBのファイルを公開することができるようになりました。 (@mishig25への感謝、普通の会話で「dreamboothing」という動詞を使った最初の人です)。…

パラメータ効率の高いファインチューニングを使用する 🤗 PEFT

動機 トランスフォーマーアーキテクチャに基づく大規模言語モデル(LLM)であるGPT、T5、BERTなどは、さまざまな自然言語処理(NLP)タスクで最先端の結果を達成しています。これらのモデルは、コンピュータビジョン(CV)(VIT、Stable Diffusion、LayoutLM)やオーディオ(Whisper、XLS-R)などの他の領域にも進出しています。従来のパラダイムは、一般的なWebスケールのデータでの大規模な事前学習に続いて、ダウンストリームのタスクに対する微調整です。ダウンストリームのデータセットでこれらの事前学習済みLLMを微調整することで、事前学習済みLLMをそのまま使用する場合(ゼロショット推論など)と比較して、大幅な性能向上が得られます。 しかし、モデルが大きくなるにつれて、完全な微調整は一般的なハードウェアで訓練することが不可能になります。また、各ダウンストリームタスクごとに微調整済みモデルを独立して保存および展開することは非常に高コストです。なぜなら、微調整済みモデルのサイズは元の事前学習済みモデルと同じサイズだからです。パラメータ効率の良い微調整(PEFT)アプローチは、これらの問題に対処するために開発されました! PEFTアプローチは、事前学習済みLLMのほとんどのパラメータを凍結しながら、わずかな(追加の)モデルパラメータのみを微調整するため、計算およびストレージコストを大幅に削減します。これにより、LLMの完全な微調整中に観察される「壊滅的な忘却」という問題も克服されます。PEFTアプローチは、低データレジメでの微調整よりも優れた性能を示し、ドメイン外のシナリオにもより適応します。これは、画像分類や安定拡散ドリームブースなどのさまざまなモダリティに適用することができます。 また、PEFTアプローチは移植性にも役立ちます。ユーザーはPEFTメソッドを使用してモデルを微調整し、完全な微調整の大きなチェックポイントと比較して数MBの小さなチェックポイントを取得することができます。たとえば、「bigscience/mt0-xxl」は40GBのストレージを使用し、完全な微調整では各ダウンストリームデータセットに40GBのチェックポイントが生成されますが、PEFTメソッドを使用すると、各ダウンストリームデータセットにはわずか数MBのチェックポイントでありながら、完全な微調整と同等の性能が得られます。PEFTアプローチからの小さなトレーニング済み重みは、事前学習済みLLMの上に追加されます。そのため、モデル全体を置き換えることなく、小さな重みを追加することで同じLLMを複数のタスクに使用することができます。 つまり、PEFTアプローチは、わずかなトレーニング可能なパラメータの数だけで完全な微調整と同等のパフォーマンスを実現できるようにします。 本日は、🤗 PEFTライブラリをご紹介いたします。このライブラリは、最新のパラメータ効率の良い微調整技術を🤗 Transformersと🤗 Accelerateにシームレスに統合しています。これにより、Transformersの最も人気のあるモデルを使用し、Accelerateのシンプルさとスケーラビリティを活用することができます。以下は現在サポートされているPEFTメソッドですが、今後も追加される予定です: LoRA:LORA:大規模言語モデルの低ランク適応 Prefix Tuning:P-Tuning v2:プロンプトチューニングは、スケールとタスクにわたって完全な微調整と同等の性能を発揮することができます Prompt Tuning:パラメータ効率の良いプロンプトチューニングの力 P-Tuning:GPTも理解しています ユースケース ここでは多くの興味深いユースケースを探求しています。以下はいくつかの興味深い例です: Google Colabで、Nvidia GeForce RTX…

Swift 🧨ディフューザー – Mac用の高速安定拡散

Diffusers for Macを使用して、最新の拡散モデルによってテキストを美しい画像に簡単に変換できます。このネイティブアプリは、Hugging Face Hubへのコミュニティの貢献によって提供された最先端のテキストから画像へのモデルを活用し、高速なパフォーマンスのためにCore MLに変換されています。最新バージョンの1.1は、Mac App Storeで利用可能であり、パフォーマンスの大幅なアップグレードと使いやすいインターフェースの調整が行われています。これは将来の機能アップデートのための堅牢な基盤となっています。さらに、このアプリは完全にオープンソースであり、許容されるライセンスであるため、あなた自身でも構築することができます!詳細については、https://github.com/huggingface/swift-coreml-diffusers でGitHubリポジトリをご覧ください。 Diffusers for Macとは具体的には何ですか? Diffusersアプリ(App Store、ソースコード)は、Mac版の 🧨 diffusers ライブラリの対応アプリです。このライブラリはPythonとPyTorchで書かれており、モジュラーな設計を使用して拡散モデルのトレーニングと実行を行います。多くの異なるモデルとタスクをサポートし、高度に構成可能で最適化されています。Macでも実行できます。Apple Siliconでは、PyTorchの mps アクセラレータを使用します。 では、なぜネイティブのMacアプリを実行したいのでしょうか?その理由はいくつかあります: オリジナルのPyTorchモデルではなく、Core MLモデルを使用します。これは、Appleハードウェアの特定の最適化に対応する追加の最適化を可能にし、Core MLモデルはシステム内のすべての計算デバイス(CPU、GPU、ニューラルエンジン)で実行できます。PyTorchの…

Diffusersライブラリの開発に関する倫理ガイドライン

私たちは、一つひとつのコミットによって、私たちのライブラリをより責任あるものにする旅に出ています! Diffusersライブラリのドキュメンテーションの一部として、倫理的なフレームワークの公開をお知らせできることを誇りに思っています。 拡散モデルの現実のケースアプリケーションと社会への潜在的な負の影響を考慮すると、このイニシアチブは、Diffusersライブラリのメンテナによるコミュニティの貢献に関する技術的な意思決定を導くことを目的としています。私たちは、意思決定の方法について透明性を持ち、何よりも、それらの意思決定を導く価値観を明確にすることを目指しています。 私たちは、倫理を、ガイドとなる価値観、具体的な行動、そして継続的な適応というプロセスとして捉えています。そのため、私たちはガイドラインを時間と共に調整することにコミットし、Diffusersプロジェクトの進化と、それを生かし続けるコミュニティからの価値あるフィードバックに従います。 透明性:私たちは、PRの管理やユーザへの選択の説明、技術的な意思決定について透明性を持つことにコミットしています。 一貫性:私たちは、プロジェクトの管理においてユーザに同じレベルの注意を保証し、技術的に安定した一貫性を持つことにコミットしています。 シンプルさ:Diffusersライブラリの使用と活用を容易にするため、プロジェクトのゴールをシンプルで一貫性のあるものにすることにコミットしています。 アクセシビリティ:Diffusersプロジェクトは、技術的な専門知識を持たないコントリビュータでも実行できるようにすることで、研究成果をコミュニティによりアクセスしやすくするお手伝いをします。 再現性:Diffusersライブラリを介して提供されるアップストリームのコード、モデル、データセットの再現性について透明性を持つことを目指しています。 責任:コミュニティとチームワークを通じて、この技術の潜在的なリスクと危険を予測し、軽減するために、私たちはユーザに対して共同の責任を持ちます。 さらに、Hugging Faceチームと広くコミュニティによって実装された安全機能とメカニズムの非網羅的なリストを提供しています。 コミュニティタブ:プロジェクトについて議論し、より良いコラボレーションを図るためのコミュニティタブです。 タグ機能:リポジトリの作成者は、コンテンツを「一般公開しない」とタグ付けすることができます。 バイアスの探索と評価:Hugging Faceチームは、Stable DiffusionとDALL-Eのバイアスを対話的にデモンストレーションするスペースを提供しています。この意味で、バイアスの探求と評価をサポート・奨励しています。 デプロイメントにおける安全性の促進 安全なStable Diffusion:ウェブクロールされたデータセットでトレーニングされたStable Diffusionなどのモデルが不適切な退化に苦しむという問題を緩和します。関連論文:Safe Latent Diffusion: Mitigating…

時間をかけて生存者を助け、機械学習を利用して競争する

2023年2月6日、トルコ南東部でマグニチュード7.7と7.6の地震が発生し、10の都市に影響を及ぼし、2月21日現在で4万2000人以上が死亡し、12万人以上が負傷しました。 地震の数時間後、プログラマーのグループが「アフェタリタ」と呼ばれるアプリケーションを展開するためのDiscordサーバーを立ち上げました。このアプリケーションは、捜索救助チームとボランティアが生存者を見つけて支援するために使用されます。このようなアプリの必要性は、生存者が自分の住所や必要なもの(救助を含む)をテキストのスクリーンショットとしてソーシャルメディアに投稿したことから生じました。一部の生存者は、自分が生きていることと救助を必要としていることを、ツイートで伝え、それにより親族が知ることができました。これらのツイートから情報を抽出する必要があり、私たちはこれらを構造化されたデータに変換するためのさまざまなアプリケーションを開発し、展開するために時間との競争をしました。 Discordサーバーに招待されたとき、私たちは(ボランティアとして)どのように運営し、何をするかについてかなりの混乱がありました。私たちは共同でモデルをトレーニングするために、モデルとデータセットのレジストリが必要でした。私たちはHugging Faceの組織アカウントを開設し、MLベースのアプリケーションを受け取り、情報を処理するためのプルリクエストを通じて共同作業しました。 他のチームのボランティアから、スクリーンショットを投稿し、スクリーンショットから情報を抽出し、それを構造化してデータベースに書き込むアプリケーションの需要があることを聞きました。私たちは、与えられた画像を取得し、まずテキストを抽出し、そのテキストから名前、電話番号、住所を抽出し、これらの情報を権限付与された当局に提供するデータベースに書き込むアプリケーションの開発を開始しました。さまざまなオープンソースのOCRツールを試した後、OCR部分には「easyocr」を使用し、このアプリケーションのインターフェースの構築には「Gradio」を使用しました。OCRからのテキスト出力は、トランスフォーマーベースのファインチューニングされたNERモデルを使用して解析されます。 アプリケーションを共同で改善するために、Hugging Face Spacesにホストし、アプリケーションを維持するためのGPUグラントを受け取りました。Hugging Face HubチームはCIボットをセットアップしてくれたので、プルリクエストがSpaceにどのように影響を与えるかを見ることができ、プルリクエストのレビュー中に役立ちました。 その後、さまざまなチャンネル(Twitter、Discordなど)からラベル付けされたコンテンツが提供されました。これには、助けを求める生存者のツイートの生データと、それらから抽出された住所と個人情報が含まれていました。私たちは、まずはHugging Face Hub上のオープンソースのNLIモデルと、クローズドソースの生成モデルエンドポイントを使用したフューショットの実験から始めました。私たちは、xlm-roberta-large-xnliとconvbert-base-turkish-mc4-cased-allnli_trというモデルを試しました。NLIモデルは特に役立ちました。候補ラベルを使用して直接推論でき、データのドリフトが発生した際にラベルを変更できるため、生成モデルはバックエンドへの応答時にラベルを作り上げる可能性があり、不一致を引き起こす可能性がありました。最初はラベル付けされたデータがなかったので、何でも動くでしょう。 最終的に、私たちは独自のモデルを微調整することにしました。1つのGPUでBERTのテキスト分類ヘッドを微調整するのに約3分かかります。このモデルをトレーニングするためのデータセットを開発するためのラベリングの取り組みがありました。モデルカードのメタデータに実験結果を記録し、後でどのモデルを展開するかを追跡するためのリーダーボードを作成しました。ベースモデルとして、bert-base-turkish-uncasedとbert-base-turkish-128k-casedを試しましたが、bert-base-turkish-casedよりも優れたパフォーマンスを発揮することがわかりました。リーダーボードはこちらでご覧いただけます。 課題とデータクラスの不均衡を考慮し、偽陰性を排除することに焦点を当て、すべてのモデルの再現率とF1スコアをベンチマークするためのスペースを作成しました。これには、関連するモデルリポジトリにメタデータタグdeprem-clf-v1を追加し、このタグを使用して記録されたF1スコアと再現率を自動的に取得し、モデルをランク付けしました。漏れを防ぐために別のベンチマークセットを用意し、モデルを一貫してベンチマークしました。また、各モデルをベンチマークし、展開用の各ラベルに対して最適な閾値を特定しました。 NERモデルを評価するために、データラベラーが改善された意図データセットを提供するために取り組んでいるため、クラウドソーシングの取り組みとしてNERモデルを評価するためのラベリングインターフェースを設定しました。このインターフェースでは、ArgillaとGradioを使用して、ツイートを入力し、出力を正しい/正しくない/曖昧などのフラグで示すことができます。 後で、データセットは重複を排除してさらなる実験のベンチマークに使用されました。 機械学習の別のチームは、特定のニーズを得るために生成モデル(ゲート付きAPIの背後)と連携し、テキストとして自由なテキストを使用し、各投稿に追加のコンテキストとしてテキストを渡すためにAPIエンドポイントを別のAPIとしてラップし、クラウドに展開しました。少数のショットのプロンプティングをLLMsと組み合わせて使用することで、急速に変化するデータのドリフトの存在下で細かいニーズに対応するのに役立ちます。調整する必要があるのはプロンプトだけであり、ラベル付けされたデータは必要ありません。 これらのモデルは現在、生存者にニーズを伝えるためにボランティアや救助チームがヒートマップ上のポイントを作成するために本番環境で使用されています。 Hugging Face Hubとエコシステムがなかったら、私たちはこのように迅速に協力し、プロトタイプを作成し、展開することはできませんでした。以下は住所認識および意図分類モデルのためのMLOpsパイプラインです。 このアプリケーションとその個々のコンポーネントには何十人ものボランティアがおり、短期間でこれらを提供するために寝ずに働きました。 リモートセンシングアプリケーション…

StackLLaMA:RLHFを使用してLLaMAをトレーニングするための実践ガイド

ChatGPT、GPT-4、Claudeなどのモデルは、Reinforcement Learning from Human Feedback(RLHF)と呼ばれる手法を使用して、予想される振る舞いにより適合するように微調整された強力な言語モデルです。 このブログ記事では、LlaMaモデルをStack Exchangeの質問に回答するためにRLHFを使用してトレーニングするために関与するすべてのステップを以下の組み合わせで示します: 教師あり微調整(SFT) 報酬/選好モデリング(RM) 人間のフィードバックからの強化学習(RLHF) From InstructGPT paper: Ouyang, Long, et al. “Training language models to follow instructions with human…

UnityゲームをSpaceにホストする方法

UnityゲームをHugging Face Spaceでホストできることを知っていますか?いいえ?そうです、できます! Hugging Face Spacesは、デモを構築、ホスト、共有するための簡単な方法です。通常は機械学習のデモに使用されますが、プレイ可能なUnityゲームもホストできます。以下にいくつかの例を示します。 Huggy Farming Game Unity APIデモ 次に、Spaceで独自のUnityゲームをホストする方法を説明します。 ステップ1:静的HTMLテンプレートを使用してSpaceを作成する まず、Hugging Face Spacesに移動してスペースを作成します。 “Static HTML”テンプレートを選択し、スペースに名前を付けて作成します。 ステップ2:Gitを使用してスペースをクローンする Gitを使用して、新しく作成したスペースをローカルマシンにクローンします。ターミナルまたはコマンドプロンプトで次のコマンドを実行することでこれを行うことができます。 git clone https://huggingface.co/spaces/{your-username}/{your-space-name} ステップ3:Unityプロジェクトを開く…

BERTopicとHugging Face Hubの統合をご紹介します

私たちは、BERTopic Pythonライブラリの重要なアップデートを発表して大変喜んでいます。これにより、トピックモデリングの愛好家や実践者のためのワークフローがさらに効率化され、機能が拡張されました。BERTopicは、Hugging Face Hubへのトレーニング済みトピックモデルの直接プッシュとプルをサポートするようになりました。この新しい統合により、BERTopicのパワーを生かして製品の使用例でのトピックモデリングが簡単に行えるようになりました。 トピックモデリングとは何ですか? トピックモデリングは、ドキュメントのグループ内に隠れたテーマや「トピック」を明らかにするのに役立つメソッドです。ドキュメント内の単語を分析することで、これらの潜在的なトピックを明らかにするパターンや関連性を見つけることができます。たとえば、機械学習に関するドキュメントは、「勾配」や「埋め込み」といった単語を使用する可能性が高く、パンの焼き方に関するドキュメントとは異なります。 各ドキュメントは通常、異なる比率で複数のトピックをカバーしています。単語の統計を調べることで、これらのトピックを表す関連する単語のクラスタを特定することができます。これにより、ドキュメントの分析と、それぞれのドキュメント内のトピックのバランスを決定することができます。より最近では、トピックモデリングの新しいアプローチでは、単語の使用ではなく、Transformerベースのモデルなど、より豊かな表現を使用するようになりました。 BERTopicとは何ですか? BERTopicは、さまざまな埋め込み技術とc-TF-IDFを使用して、トピックモデリングのプロセスを簡素化し、重要な単語をトピックの説明に保持しながら、密なクラスタを作成する最新のPythonライブラリです。 BERTopicライブラリの概要 BERTopicは初心者でも簡単に始めることができますが、ガイド付き、教師付き、半教師付き、およびマニュアルトピックモデリングなど、トピックモデリングのさまざまな高度なアプローチをサポートしています。最近では、BERTopicはマルチモーダルトピックモデルもサポートしています。BERTopicには、視覚化ツールの豊富なセットもあります。 BERTopicは、テキストコレクション内の重要なトピックを明らかにするための強力なツールを提供し、貴重な洞察を得ることができます。BERTopicを使用すると、顧客のレビューを分析したり、研究論文を探索したり、ニュース記事をカテゴリ分けしたりすることが容易になります。テキストデータから意味のある情報を抽出したいと考えている人にとって、これは必須のツールです。 Hugging Face Hubを使用したBERTopicモデルの管理 最新の統合により、BERTopicのユーザーはトレーニング済みのトピックモデルをHugging Face Hubにシームレスにプッシュおよびプルすることができます。この統合により、異なる環境でのBERTopicモデルの展開と管理が簡素化されるという重要なマイルストーンが達成されました。 BERTopicモデルのトレーニングとハブへのプッシュは、数行で行うことができます from bertopic import BERTopic topic_model…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us