Learn more about Search Results この - Page 779
- You may be interested
- 「フォンダンAIは、クリエイティブ・コモ...
- 「Power BI ビジュアライゼーションの究極...
- Apple SiliconでのCore MLを使用した安定...
- 「SMARTは、AI、自動化、そして働き方の未...
- 「2023年、オープンLLMの年」
- 「長期のCOVID検査への研究者の前進」
- dbtのインクリメンタル – 正しい方法
- ドメイン適応:事前に学習済みのNLPモデル...
- 「Jupyter APIを使用してノートブックをス...
- 「人間の労働が機械学習を可能にする方法」
- 新しいCMUとMetaによるAI研究、PyNeRFの導...
- ビジネスの課題を解読する:分析的な解決...
- Gradio 3.0 がリリースされました!
- 「インフレクションは、世界で最高のAIモ...
- 「研究者たちが、チップベースのサーミオ...
AIのマスタリング:プロンプトエンジニアリングソリューションの力
私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、AIモデルのフルポテンシャルを引き出すことができます
Python におけるカテゴリカル変数の扱い方ガイド
データサイエンスまたは機械学習プロジェクトでのカテゴリ変数の扱いは容易な仕事ではありませんこの種の作業には、アプリケーションの分野の深い知識と幅広い理解が必要です...
データサイエンティストとして成功するために必要なソフトスキル
データサイエンティストとしてのキャリアを構築する際には、ハードスキルにフォーカスすることが簡単です非線形カーネルを持つSVMのような新しいMLアルゴリズムを学ぶことや、新しいソフトウェアを学びたいと思うかもしれません
プレイヤーの離脱を予測する方法、ChatGPTの助けを借りる
ゲームの世界では、企業はプレイヤーを引きつけるだけでなく、特にゲーム内のマイクロトランザクションに頼る無料のゲームでは、できるだけ長く彼らを保持することを目指していますこれらの...
Amazon SageMaker 上で MPT-7B を微調整する
毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです
線形回帰と勾配降下法
線形回帰は機械学習に存在する基本アルゴリズムの1つですその内部ワークフローを理解することは、データサイエンスの他のアルゴリズムの主要な概念を把握するのに役立ちます...
Word2Vec、GloVe、FastText、解説
コンピューターは我々と同じように単語を理解することができませんコンピューターは数字を扱うことが好きですですから、コンピューターが単語とその意味を理解するのを助けるために、私たちは「埋め込み」と呼ばれるものを使用しますこれらの埋め込みは…
Boto3 vs AWS Wrangler PythonによるS3操作の簡素化
このチュートリアルでは、boto3とawswranglerの2つの強力なライブラリを探索し、比較することで、PythonによるAWS S3開発の世界に深く入り込んでいきます実際、この記事では以下の内容をカバーします…
非教師あり学習シリーズ:階層クラスタリングの探索
前回の「教師なし学習シリーズ」の投稿では、最も有名なクラスタリング手法の1つであるK平均法クラスタリングについて探究しました今回の投稿では、別の手法の背後にある方法について説明します...
チャートの推論に基づくモデルの基盤
グーグルリサーチのリサーチソフトウェアエンジニア、ジュリアン・アイゼンシュロスによる投稿 ビジュアル言語は、情報を伝えるためにテキスト以外の絵文字を使用するコミュニケーション形式です。アイコノグラフィ、情報グラフィック、表、プロット、チャートなどの形でデジタルライフで普及しており、道路標識、コミックブック、食品ラベルなどの現実世界にも広がっています。このようなメディアをコンピュータがより理解できるようにすることは、科学的コミュニケーションと発見、アクセシビリティ、データの透過性に役立ちます。 ImageNetの登場以来、学習ベースのソリューションを使用してコンピュータビジョンモデルは大きな進歩を遂げてきましたが、焦点は自然画像にあり、分類、ビジュアルクエスチョンアンサリング(VQA)、キャプション、検出、セグメンテーションなどのさまざまなタスクが定義され、研究され、いくつかの場合には人間の性能に達成されています。しかし、ビジュアル言語は同じレベルの注目を集めていません。これは、この分野における大規模なトレーニングセットの不足のためかもしれません。しかし、PlotQA、InfographicsVQA、ChartQAなどの視覚言語イメージにおける質問応答システムの評価を目的とした新しい学術データセットが、ここ数年で作成されています。 ChartQAからの例。質問に答えるには、情報を読み取り、合計と差を計算する必要があります。 これらのタスクに対して構築された既存のモデルは、光学的文字認識(OCR)情報とその座標を大規模なパイプラインに統合することに頼っていましたが、プロセスはエラーが発生しやすく、遅く、一般化が悪いです。既存の畳み込みニューラルネットワーク(CNN)またはトランスフォーマーに基づくエンドツーエンドのコンピュータビジョンモデルは、自然画像で事前にトレーニングされたモデルを簡単にビジュアル言語に適応させることができなかったため、これらの方法が広く使用されていました。しかし、既存のモデルは、棒グラフの相対高さや円グラフのスライスの角度を読み取り、軸のスケールを理解し、色、サイズ、テクスチャでピクトグラムを伝説値に正しくマッピングし、抽出された数字で数値演算を実行するなど、チャートの質問に対する課題には準備ができていません。 これらの課題に対応するために、「MatCha:数学推論とチャートディレンダリングを活用したビジュアル言語の事前トレーニングの強化」という提案を行います。 MatChaは数学とチャートを表す言葉であり、2つの補完的なタスクでトレーニングされたピクセルからテキストへの基礎モデル(複数のアプリケーションでファインチューニングできる組み込み帰納バイアスを備えた事前トレーニングモデル)です。1つはチャートディレンダリングであり、プロットまたはチャートが与えられた場合、画像からテキストモデルはその基礎となるデータテーブルまたはレンダリングに使用されるコードを生成する必要があります。数学推論の事前トレーニングでは、テキストベースの数値推論データセットを選択し、入力を画像にレンダリングし、画像からテキストモデルが回答をデコードする必要があります。また、「DePlot:プロットからテーブルへの翻訳によるワンショットビジュアル言語推論」という、テーブルへの翻訳を介したチャートのワンショット推論にMatChaの上に構築されたモデルを提案します。これらの方法により、ChartQAの以前の最高記録を20%以上超え、パラメータが1000倍多い最高の要約システムに達成します。両方の論文はACL2023で発表されます。 チャートディレンダリング プロットやチャートは、基礎となるデータテーブルとコードによって通常生成されます。コードは、図の全体的なレイアウト(タイプ、方向、色/形状スキームなど)を定義し、基礎となるデータテーブルは実際の数字とそのグループ化を確立します。データとコードの両方がコンパイラ/レンダリングエンジンに送信され、最終的な画像が作成されます。チャートを理解するには、イメージ内の視覚パターンを発見し、効果的に解析してグループ化し、主要な情報を抽出する必要があります。プロットレンダリングプロセスを逆転するには、すべてのこのような機能が必要であり、したがって理想的な事前トレーニングタスクとして機能することができます。 ランダムなプロットオプションを使用して、Airbus A380 Wikipediaページの表から作成されたチャートです。MatChaの事前トレーニングタスクは、イメージからソーステーブルまたはソースコードを回復することです。 チャート、その基礎となるデータテーブル、およびそのレンダリングコードを同時に取得することは、実践的には困難です。事前トレーニングデータを十分に収集するために、[chart、code]および[chart、table]のペアを独立して蓄積します。[chart、code]の場合、適切なライセンスを持つすべてのGitHub IPythonノートブックをクロールし、図を含むブロックを抽出します。図とそれに直前にあるコードブロックは、[chart、code]ペアとして保存されます。[chart、table]のペアについては、2つのソースを調査しました。最初のソースは、合成データで、TaPasコードベースからWebクロールされたWikipediaテーブルを手動でコードに変換します。列のタイプに応じて、いくつかのプロットオプションをサンプリングして組み合わせます。さらに、事前トレーニングコーパスを多様化するために、PlotQAで生成された[chart、table]ペアも追加します。2番目のソースはWebクロールされた[chart、table]ペアです。Statista、Pew、Our World in Data、OECDの4つのWebサイトから合計約20,000ペアを含むChartQAトレーニングセットでクロールされた[chart、table]ペアを直接使用します。 数学的推論 MatChaに数値推論知識を組み込むために、テキスト数学データセットから数学的推論スキルを学習します。事前トレーニングには、MATHとDROPの2つの既存のテキスト数学推論データセットを使用します。MATHは合成的に作成され、各モジュール(タイプ)の質問ごとに200万のトレーニング例を含んでいます。DROPは読解型のQAデータセットで、入力はパラグラフのコンテキストと質問です。 DROPでの質問を解決するには、モデルがパラグラフを読み、関連する数字を抽出し、数値計算を実行する必要があります。私たちは、両方のデータセットが補完的であることを発見しました。MATHには、異なるカテゴリーにわたる多数の質問が含まれており、モデルに明示的に注入する必要がある数学的操作を特定するのに役立ちます。DROPの読解形式は、モデルが情報抽出と推論を同時に実行する典型的なQA形式に似ています。実際には、両方のデータセットの入力を画像にレンダリングします。モデルは答えをデコードするように訓練されます。 MATHとDROPからの例をMatChaの事前トレーニング目的に取り込むことにより、MatChaの数学的推論スキルを向上させます。入力テキストを画像としてレンダリングします。 エンドツーエンドの結果 Webサイト理解に特化した画像からテキストへの変換トランスフォーマーであるPix2Structモデルバックボーンを使用し、上記の2つのタスクで事前トレーニングを行います。MatChaの強みを示すために、表の基礎にアクセスできない質問応答や要約のためのチャートやプロットを含むいくつかの視覚言語タスクで微調整します。MatChaは、以前のモデルの性能を大幅に上回り、基礎となるテーブルにアクセスできると仮定する以前の最先端も上回ります。 以下の図では、チャートと作業するための標準的なアプローチであったOCRパイプラインから情報を取り込んだ2つのベースラインモデルを最初に評価します。最初のものはT5に基づき、2番目のものはVisionTaPasに基づきます。また、PaLI-17BとPix2Structのモデル結果を報告します。PaLI-17Bは、多様なタスクでトレーニングされた大型(他のモデルの約1000倍)のイメージプラステキスト・トゥ・テキスト・トランスフォーマーですが、テキストやその他の視覚言語の読み取り能力に限界があります。最後に、Pix2StructとMatChaのモデル結果を報告します。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.