Learn more about Search Results Yi - Page 74

新しい人工知能(AI)の研究アプローチは、統計的な視点からアルゴリズム学習の問題として、プロンプトベースのコンテキスト学習を提示します

インコンテキスト学習は、最近のパラダイムであり、大規模言語モデル(LLM)がテストインスタンスと数少ないトレーニング例を入力として観察し、パラメータの更新なしに直接出力をデコードする方法です。この暗黙のトレーニングは、通常のトレーニングとは異なり、例に基づいて重みが変更されることと対照的です。  出典: https://arxiv.org/pdf/2301.07067.pdf なぜインコンテキスト学習が有益であるのかという問題が生じます。2つの回帰タスクをモデル化したいと仮定できますが、制限は1つのモデルしか使用できないということです。ここでインコンテキスト学習は便利であり、タスクごとに回帰アルゴリズムを学習することができます。つまり、モデルは異なる入力のセットに対して別々に適合した回帰を使用します。  論文 「Transformers as Algorithms: Generalization and Implicit Model Selection in In-context Learning」では、インコンテキスト学習の問題をアルゴリズム学習の問題として形式化しています。彼らは学習アルゴリズムとしてトランスフォーマーを使用し、推論時に別のターゲットアルゴリズムを実装するためにトレーニングして特化できると述べています。この論文では、トランスフォーマーを介したインコンテキスト学習の統計的側面を探求し、理論的予測を検証するために数値評価を行いました。 この研究では、2つのシナリオを調査しました。最初のシナリオでは、プロンプトはi.i.d(入力、ラベル)のペアのシーケンスで構成されています。もう一つのシナリオでは、シーケンスは動的システムの軌跡です(次の状態は前の状態に依存します:xm+1 = f(xm) + ノイズ)。   では、このようなモデルをどのようにトレーニングするのでしょうか? ICLのトレーニングフェーズでは、T個のタスクがデータ分布 {Dt}t=1Tに関連付けられます。各タスクに対して、対応する分布からトレーニングシーケンスStを独立してサンプリングします。その後、Stの部分シーケンスとシーケンスStから値xを渡して、xに対して予測を行います。ここではメタラーニングのフレームワークのようです。予測後、損失を最小化します。ICLトレーニングの背後にある直感は、対象のタスクに最適なアルゴリズムを探し出すことです。…

2023年の最高のサイバーセキュリティニュースレター

サイバーセキュリティのニュースレターは、幅広いトピックをカバーし、さまざまな読者のニーズに対応していますこの分野で先を見越したいと思っている人にとって、非常に役立ちます

新しい言語モデルを評価するための3つの重要な方法

毎週新しいLLMがリリースされますが、私のように考えると、これはついに私がLLMを利用したいすべてのユースケースに適合するのでしょうか?このチュートリアルでは、私は...を共有します

Field Programmable Gate Array(FPGA)とは何ですか:人工知能(AI)におけるFPGA vs. GPU

フィールドプログラマブルゲートアレイ(FPGA)は、製造後に設定とカスタマイズが可能な集積回路です。これらのチップはこの能力によって「フィールドプログラマブル」と呼ばれます。プログラム可能なロジックブロックから構成され、幅広い機能を実行したり、論理ゲートとして機能したりすることができます。これにより、回路の動作方法に対してユーザーに大きな柔軟性が提供されます。 フィールドプログラマブルゲートアレイ(FPGA)は、設定可能なロジックブロック(CLB)とプログラマブルなインターコネクトで構成される半導体デバイスです。これらのブロックは、シンプルから複雑な操作を行い、フリップフロップやメモリブロックなどのメモリコンポーネントを含むことができます。 FPGAは、プログラマブルな読み取り専用メモリチップと似ていますが、より多くのゲートを収容し、ASIC(特定のタスク用に設計された集積回路)とは異なり再プログラム可能です。これらは特定の用途に合わせてマイクロプロセッサをカスタマイズするために使用され、ワイヤレス通信、データセンター、自動車、医療、航空宇宙など、さまざまな業界で人気があります。FPGAの再プログラム可能な性質により、必要に応じて柔軟性とデザインの更新が可能になります。                          出典: https://allaboutfpga.com/fpga-architecture/ 出典: https://blog.samtec.com/post/new-intel-fpga-platform-features-samtec-interconnect/ FPGAの応用 FPGAは、さまざまな業界で利用され、多様な実装領域があります。主な利用領域のいくつかは以下の通りです。 エネルギー産業 FPGAは、効率的な電力ネットワークが最適な運用のために必要な送電および配電(T&D)変電所などのスマート電力網技術において、パフォーマンスとスケーラビリティを向上させながら消費電力を低減する重要な役割を果たすことができます。 向上した自動車体験 MicrosemiのFPGAは、クルーズコントロール、死角警告、衝突回避などの新しい自動車の安全アプリケーションをOEM(自動車メーカー)およびサプライヤーが作成することを可能にします。これらのFPGAは、情報保証、改ざん防止、ハードウェアセキュリティなどのサイバーセキュリティ機能、エラーコレクションメモリや低静的電力などの信頼性機能を提供します。 航空宇宙と防衛 産業用製造会社は、パフォーマンス、信頼性、寿命要件を満たすために、しばしば宇宙グレードのラジエーションハードおよびラジエーショントレラントなFPGAを提供しています。これらのFPGAは、従来のASIC実装よりも柔軟性があり、処理集約型の宇宙システムに特に適しています。 コンピュータビジョンシステム 現代の世界では、ビデオ監視カメラ、ロボット、およびその他のデバイスなど、さまざまなガジェットでコンピュータビジョンシステムが広く使用されています。これらのガジェットが位置、周囲、および顔認識の能力に基づいて適切に人と対話するためには、しばしばFPGAベースのシステムを使用する必要があります。 データセンター インターネット・オブ・シングスとビッグデータは、取得および処理されるデータ量の著しい増加をもたらしています。深層学習技術の使用により、低遅延、柔軟性、および安全な計算能力が求められます。スペースコストの上昇により、より多くのサーバーを追加してもこの需要には応えられません。FPGAは、処理の高速化、設計の柔軟性、ソフトウェアの脆弱性に対するハードウェアベースのセキュリティの面でデータセンターでの受け入れが増えています。 リアルタイムシステム 従来のCPUは応答時間が予測困難であり、トリガーが正確に発火するタイミングを予測するのが困難なため、応答時間が重要なリアルタイムシステムでFPGAが使用されています。 ASICの設計 回路のアーキテクチャを作成することが最初のステップであり、それからFPGAを使用してプロトタイプを構築し、テストすることでエラーを修正することができます。プロトタイプが予想通りの動作をすると、ASICプロジェクトが開発されます。このアプローチにより、統合回路の作成は手間がかかり複雑な作業であるため、時間を節約することができます。 FPGAベースのアクセラレーションサービス…

共分散と相関の違いは何ですか?

イントロダクション 統計の広範な領域において、変数間の複雑な関係を理解し解き放つことは重要です。 データ駆動型の意思決定、科学的な発見、予測モデリングなど、複雑なデータセット内の隠れた関連やパターンを解き明かす能力に依存しています。この追求を支えるさまざまな統計基準の中で、共分散と相関は重要であり、変数間の独立性に関する洞察を提供します。 共分散と相関は統計解析において頻繁に発生する変数ですが、多くの人々が誤解したり、相互に交換可能に使用したりすることがあります。これら2つの基準を区別する微妙なニュアンスは、統計的な関係の解釈と活用に深い影響を与える可能性があります。 したがって、共分散と相関の真の性質を理解することは、データの全ポテンシャルを明らかにしようとするデータ愛好家や専門家にとって非常に重要です。 このブログ「共分散と相関」では、これら2つの統計的概念の違いを説明し、その関係を解明します。 また、Analytics Vidhyaの「データサイエンスのためのSwift学習」コースでスキルを向上させ、データサイエンスのキャリアを活性化しましょう。 共分散 2つのランダム変数間の系統的な関連性を示す統計用語であり、もう一方の変数の変化が1つの変数の変化を反映することを示します。 共分散の定義と計算 共分散は、2つの変数が直接的または逆比例しているかどうかを示します。 共分散の式は、データセット内のデータポイントをその平均値から求めます。たとえば、次の式を使用して、2つのランダム変数XとYの共分散を計算できます: 上記の手順において、 共分散値の解釈 共分散値は、変数間の関係の大きさと方向(正または負)を示します。共分散値は-∞から+∞の範囲を持ちます。正の値は正の関係を示し、負の値は負の関係を示します。 正の共分散、負の共分散、およびゼロ共分散 数値が高いほど、変数間の関係は依存性が高くなります。それぞれの共分散の種類を理解しましょう: 正の共分散 2つの変数間の関係が正の共分散である場合、それらは同じ方向に進化しています。これは変数間の直接的な関係を示しています。したがって、変数は同様に振る舞います。 変数の値(小さいまたは大きい)が、他の変数の重要性と等しい場合、変数間の関係は正の共分散となります。 負の共分散 負の共分散は、2つのランダム変数間の負の関係を示します。この場合、変数は逆方向に動きます。 正の共分散とは異なり、1つの変数の増加に対応して他の変数の値が減少し、その逆も同様です。…

Pythonを使用してTenacityを使用してリトライを制御する:エンドツーエンドのチュートリアル

Python Tenacityライブラリを発見し、Pythonアプリケーションで効果的な再試行ロジックとエラーハンドリングを実装する方法を学びましょうネットワークやAPIの障害、タイムアウト、およびさまざまな他の課題に対処するための実践的な例と業界で証明されたベストプラクティスを提供します

データアナリストからデータサイエンティストへのキャリアチェンジの方法は?

人々は常にデータを扱っており、データアナリストは専門知識を身につけた後、よりチャレンジングな役割を求めています。データサイエンティストは、最も収益性の高いキャリアオプションの1つとされています。スキルセットの拡大が必要ですが、いくつかの教育プラットフォームが変化に有益な洞察を提供しています。多くのデータアナリストが成功して転身していますし、あなたも次の転身者になることができます! 以下のステップは、データサイエンティストとしてのキャリアをスタートさせる際に、企業の成長に貢献し、専門知識を増やすのに役立ちます: スキルギャップの評価 データサイエンティストの役割に必要な基本的なスキルと知識 データサイエンティストはデータを実験する必要があるため、新しいアイデアや研究を開発するマインドセットが重要です。過去の実験のミスを分析する能力も同様に重要です。これに加えて、以下のような技術スキルと知識が求められます: 技術スキル: PythonやRなどのプログラミング言語やデータ言語 線形回帰やロジスティック回帰、ランダムフォレスト、決定木、SVM、KNNなどの機械学習アルゴリズム SAP HANA、MySQL、Microsoft SQL Server、Oracle Databaseなどのリレーショナルデータベース Natural Language Processing(NLP)、Optical Character Recognition(OCR)、Neural networks、computer vision、deep learningなどの特殊なスキル RShiny、ggplot、Plotly、Matplotlitなどのデータ可視化能力 Hadoop、MapReduce、Sparkなどの分散コンピューティング 分析スキル:…

既存のLLMプロジェクトをLangChainを使用するように適応する

おめでとうございます!素晴らしいLLMの概念証明が完成しましたね自信を持って世界に披露できます!もしかしたら、OpenAIライブラリを直接利用したかもしれませんし、他のライブラリを使用しているかもしれませんが、どのようにしても、この素晴らしい成果を誇示できます!

科学ソフトウェアの開発

この記事では、このシリーズの最初の記事で示されたように、科学ソフトウェアの開発においてTDDの原則に従って、Sobelフィルタとして知られるエッジ検出フィルタを開発します

クエリを劇的に改善できる2つの高度なSQLテクニック

SQLは、すべてのデータプロフェッショナルにとっての基本ですデータアナリスト、データサイエンティスト、データエンジニアであるかどうかに関係なく、クリーンで効率的なコードを書く方法をしっかりと理解している必要があります

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us