Learn more about Search Results ダウンロード - Page 74

新しいAIモデル、たった30BパラメーターでGPT-3を凌駕する

世界的に有名なオープンソース言語モデル(LLMs)プロバイダーであるMosaicMLは、最新世代のNVIDIA H100アクセラレータを搭載した画期的なMPT-30Bモデル、すなわちBase、Instruct、Chatを発表しました。これらの最新鋭モデルは、元のGPT-3に比べて品質が大幅に向上しています。 また読む: Large Language Models(LLMs)とは何ですか? MPT-7Bの前例のない成功とMPT-30Bへの進化 2023年5月のリリース以来、MPT-7Bモデルは、330万ダウンロードという驚異的な数字を叩き出し、業界を席巻しています。この成功を更に広げるため、MosaicMLは、非常に期待されていたMPT-30Bモデルをリリースしました。これにより、様々なアプリケーションで新しい可能性が開け、更なる高みに到達しました。 MPT-30Bの無比な機能 MPT-30Bの最も注目すべき成果の1つは、たった30億のパラメータで、GPT-3の175億のうちの一部を使用して、GPT-3を超える品質を実現することができたことです。この画期的なパラメータ数の削減により、MPT-30Bは、ローカルハードウェアの導入にもよりアクセスしやすくなり、推論のコストも大幅に削減されます。さらに、MPT-30Bをベースにしたカスタムモデルのトレーニングに関連する費用は、オリジナルのGPT-3をトレーニングする見積もりよりも明らかに低くなっており、企業にとって魅力的な選択肢となっています。 もっと詳しく知る:実際のユースケースに向けたGPT3の大規模言語モデルのカスタマイズ さらに、MPT-30Bのトレーニングには、最大8,000トークンの長いシーケンスが含まれており、データ重視のエンタープライズアプリケーションを処理できるようになっています。これは、NVIDIAのH100 GPUを利用して、優れたスループットと高速なトレーニング時間を実現しています。 また読む:中国の強力なNvidia AIチップの隠された市場 MPT-30Bの無限のアプリケーションを探る 多くのビジョンを持った企業が、MosaicMLのMPTモデルを活用し、AIアプリケーションを革新しています。 先進的なWebベースのIDEであるReplitは、MosaicMLのトレーニングプラットフォームを活用して、優れたコード生成モデルを構築することに成功しました。Replitは、独自のデータを活用することで、コードの品質、スピード、コスト効率を著しく向上させました。 チャットボットの開発に特化した革新的なAIスタートアップであるScatter Labは、MosaicMLの技術を活用して独自のMPTモデルをトレーニングしました。その結果、英語と韓国語の両方を理解できる多言語の生成AIモデルが作成され、広範なユーザーベースのチャット体験を大幅に向上させました。 世界的に有名な旅行費用管理ソフトウェア会社であるNavanは、MPTが提供する堅牢な基盤を活用して、バーチャルトラベルエージェントや会話型ビジネスインテリジェンスエージェントなどの最新アプリケーションにカスタマイズされたLLMsを開発しています。Navanの共同創設者兼CTOであるIlan Twig氏は、MosaicMLの基礎モデルが、際立った効率性とスケールでの推論を提供すると同時に、非常に優れた言語能力を提供していると熱狂的に称賛しています。 もっと詳しく知る:AIの力を活用するビジネスリーダーには、DataHack Summit…

ベイジアンマーケティングミックスモデルの理解:事前仕様に深く入り込む

ベイジアン・マーケティング・ミックス・モデリングは、特にLightweightMMM(Google)やPyMC Marketing(PyMC Labs)などのオープンソースツールの最近のリリースにより、ますます注目を集めています...

2023年に知っておくべきトップ10のパワフルなデータモデリングツール

イントロダクション データ駆動型の意思決定の時代において、競争力を維持するために正確なデータモデリングツールを持つことは企業にとって不可欠です。新しい開発者として、堅牢なデータモデリングの基礎は、データベースを効果的に扱うために重要です。適切に構成されたデータ構造は、スムーズなワークフローを確保し、データの損失や誤配置を防止します。 大規模で複雑なタスクに取り組むために、データモデリングツールを利用することがますます重要になっています。これらのツールは時間を節約するだけでなく、データモデリングのプロセスを簡素化することができます。 トランスフォーメーションに寄与するトップ10のデータモデリングツールを発見してください。効率性を求める経験豊富なプロフェッショナルから、ユーザーフレンドリーなソリューションを求める初心者まで、あなたのニーズに合わせて提供します。データの真のポテンシャルを引き出し、自信を持って賢い決定をする旅に出ましょう! データモデリングツールとは何ですか? データモデルは、UML図を使用してしばしば視覚的にデータ仕様を表します。データはSQLまたはNoSQLデータベースに格納され、データモデリングにはどの情報を収集し、どのように格納するかを決定することが含まれます。 データモデリングツールは、データモデリングプロセスを効率化するために使用されます。これらのツールは、データとその複数のモデル層との間のギャップを埋めます。これらのツールは、既存のデータベースをリバースエンジニアリングし、スキーマとモデルを比較およびマージし、自動的にデータベーススキーマまたはDTDを生成することができます。 効果的なデータモデリングソフトウェアは、魅力的な視覚的表現とデータベースとのシームレスな統合を提供します。ユーザーフレンドリーなデータモデリングツールは、概念的なデータモデリングをよりアクセスしやすくします。 データモデリングツールを選ぶ際に考慮すべきことは何ですか? データモデリングツールを選ぶ際には、特定のニーズを決定することが重要です。必須要件と望ましい要件を分類し、後者を優先させます。この決定は長期的な影響を持つ可能性があるため、組織内のさまざまな視点からの意見を考慮してください。 すべてのデータモデリングツールが物理モデルと論理モデルの作成、リバースエンジニアリング、およびフォワードエンジニアリングなどの基本的なタスクを処理できますが、追加の要因も考慮する必要があります。これには、チームベースのモデリング機能、バージョニング、図のカスタマイズオプション、モデルリポジトリの機能、概念的なデータモデルのサポート、エンタープライズメタデータリポジトリとの統合、および異なるモデルレベル(概念的、論理的、物理的)にわたるオブジェクトラインの維持のためのデータ合理化が含まれます。これらの要因は、あなたのデータモデリングニーズについての情報を提供し、適切な選択をするのに役立ちます。 トップ10のデータモデリングツール 1. ER/Studio Embarcadero Technologiesが開発したER/Studioは、データアーキテクト、モデラー、DBA、ビジネスアナリストにとって有用であり、データベース設計とデータ再利用を管理するために役立ちます。ツールによって、データベースコードを自動的に生成することができます。 属性と定義の完全なドキュメントを備えたツールは、ビジネスコンセプトをモデリングするのに役立ちます。 特徴 論理モデルと物理モデルの両方をサポート ツールによって、新しいデータベースの変更に対する影響分析が実施されます。 自動化とスクリプトのサポート サポートされるプレゼンテーションファイルの種類には、HTML、PNG、JPEG、RTF、XML、Schema、DTDが含まれます。 ER/Studioによって、モデルとデータベースの一貫性が保証されます。 価格…

紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析

はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…

FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します

データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...

Amazon SageMaker Data WranglerのSnowflakeへの直接接続でビジネスインサイトまでの時間を短縮してください

Amazon SageMaker Data Wranglerは、1つのビジュアルインターフェイスで、コードを書くことなく機械学習(ML)ワークフローでデータの選択とクリーニング、特徴量エンジニアリングの実行に必要な時間を週から分単位に短縮することができ、データの準備を自動化することができますSageMaker Data Wranglerは、人気のあるSnowflakeをサポートしています

Netflix株の時系列分析(Pandasによる)

はじめに データの時系列分析は、この場合はNetflixの株式などの数字の集まりだけではありません。Pandasと組み合わさることで、複雑な世界の物語を魅力的に紡ぐ織物のようなものです。神秘的な糸のように、出来事の起伏や流れ、トレンドの上昇や下降、そしてパターンの出現を捉えます。それは、私たちの現実を形作る隠されたつながりや相関関係を明らかにし、過去の生き生きとした描写を提供し、未来の一端を垣間見るものです。 時系列分析は単なるツール以上のものです。それは知識と洞察を得るためのゲートウェイであります。時間に関するデータの秘密を解き明かし、生の情報を貴重な洞察に変える力を与え、情報をもとに妥当な決定を下し、リスクを軽減し、新しい機会を活用する手助けをします。 このエキサイティングな冒険に一緒に乗り出し、時系列分析の魅力的な領域に飛び込んでみましょう! 学習目標 時系列分析の概念を紹介し、そのさまざまな分野での重要性を強調し、実際の例を示して、時系列分析の実用的な応用を紹介します。 Pythonとyfinanceライブラリを使用してNetflixの株式データをインポートする方法を実演することで、時系列データを取得し、分析のために準備するための必要な手順を学びます。 最後に、シフト、ローリング、およびリサンプリングなどの時系列分析で使用される重要なPandas関数に焦点を当て、時系列データを効果的に操作および分析するための方法を示します。 この記事は、Data Science Blogathonの一環として公開されました。 時系列分析とは何ですか? 時系列とは、連続的かつ等間隔の時間間隔で収集または記録されたデータのシーケンスです。 時系列分析は、時間によって収集されたデータポイントを分析する統計的技術です。 これには、データの視覚化、統計モデリング、予測方法などの技術が含まれます。 順次データのパターン、トレンド、依存関係を研究し、洞察を抽出し、予測を行うことが含まれます。 時系列データの例 株式市場データ:歴史的な株価を分析してトレンドを特定し、将来の価格を予測する。 天気データ:時間の経過に伴って温度、降水量、その他の変数を研究して、気候パターンを理解する。 経済指標:GDP、インフレ率、失業率を分析して、経済のパフォーマンスを評価する。 売上データ:時間の経過に伴って売上高を調べ、パターンを特定し、将来の売上高を予測する。 ウェブトラフィック:ウェブトラフィックメトリックを分析して、ユーザーの行動を理解し、ウェブサイトのパフォーマンスを最適化する。 時系列の構成要素 時系列の4つの構成要素があります。それらは次のとおりです。…

PatchTST 時系列予測における画期的な技術革新

トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...

レトロなデータサイエンス:YOLOの最初のバージョンのテスト

データサイエンスの世界は常に変化していますしばしば、変化がゆっくりと進んでいるため、私たちはそれらを見ることができないことがありますが、時間が経過すると、風景が見えやすくなります...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us