Learn more about Search Results ( link - Page 72

機械学習の専門家 – Sasha Luccioni

🤗 マシンラーニングエキスパートへようこそ – サーシャ・ルッチョーニ 🚀 サーシャのようなMLエキスパートがあなたのMLロードマップを加速する方法に興味がある場合は、hf.co/supportを訪れてください。 こんにちは、友達たち!マシンラーニングエキスパートへようこそ。私は司会者のブリトニー・ミュラーで、今日のゲストはサーシャ・ルッチョーニです。サーシャは、Hugging Faceで研究科学者として、機械学習モデルとデータセットの倫理的・社会的影響に取り組んでいます。 サーシャはまた、Big Science WorkshopのCarbon Footprint WGの共同議長、WiMLの理事、そして気候危機に機械学習を適用する意義のある活動を促進するClimate Change AI(CCAI)組織の創設メンバーでもあります。 サーシャがメールの炭素フットプリントを計測する方法、地元のスープキッチンが機械学習の力を活用するのをどのように手助けしたか、そして意味と創造性が彼女の仕事を支える方法についてお話しいただきます。 この素晴らしいエピソードを紹介するのをとても楽しみにしています!以下がサーシャ・ルッチョーニとの私の対話です: 注:転記はわかりやすい読み物を提供するためにわずかに修正/書式設定されています。 今日参加していただき、本当にありがとうございます。私たちはあなたが来てくれたことを非常に嬉しく思っています! サーシャ: 私もここにいることを本当に嬉しく思っています。 直接本題に入りますが、あなたのバックグラウンドとHugging Faceへの道を教えていただけますか? サーシャ:…

Q-学習入門 第1部への紹介

ハギングフェイスと一緒に行うディープ強化学習クラスのユニット2、パート1 🤗 ⚠️ この記事の新しいバージョンがこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 ⚠️ この記事の新しいバージョンがこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 このクラスの第1章では、強化学習(RL)、RLプロセス、およびRL問題を解決するための異なる手法について学びました。また、最初のランダーエージェントをトレーニングして、月面に正しく着陸させ、Hugging Face Hubにアップロードしました。 今日は、強化学習のメソッドの一つである価値ベースの手法について詳しく掘り下げて、最初のRLアルゴリズムであるQ-Learningを学びます。 また、スクラッチから最初のRLエージェントを実装し、2つの環境でトレーニングします: Frozen-Lake-v1(滑りにくいバージョン):エージェントは凍ったタイル(F)の上を歩き、穴(H)を避けて、開始状態(S)からゴール状態(G)へ移動する必要があります。 自動タクシーは、都市をナビゲートすることを学び、乗客をポイントAからポイントBまで輸送する必要があります。 このユニットは2つのパートに分かれています: 第1部では、価値ベースの手法とモンテカルロ法と時間差学習の違いについて学びます。 そして、第2部では、最初のRLアルゴリズムであるQ-Learningを学び、最初のRLエージェントを実装します。 このユニットは、Deep Q-Learning(ユニット3)で作業できるようになるためには基礎となるものです。これは最初のDeep…

Q-Learningの紹介 パート2/2

ディープ強化学習クラスのユニット2、パート2(Hugging Faceと共に) ⚠️ この記事の新しい更新版はこちらで入手できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらで入手できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 このユニットの第1部では、価値ベースの手法とモンテカルロ法と時差学習の違いについて学びました。 したがって、第2部では、Q-Learningを学び、スクラッチから最初のRLエージェントであるQ-Learningエージェントを実装し、2つの環境でトレーニングします: 凍った湖 v1 ❄️:エージェントは凍ったタイル(F)の上を歩き、穴(H)を避けて、開始状態(S)からゴール状態(G)に移動する必要があります。 自律運転タクシー 🚕:エージェントは都市をナビゲートし、乗客を地点Aから地点Bに輸送する必要があります。 このユニットは、ディープQ-Learning(ユニット3)で作業を行うためには基礎となるものです。 では、始めましょう! 🚀 Q-Learningの紹介 Q-Learningとは?…

Hugging Face Optimumを使用して、TransformersをONNXに変換する

ハグフェース・ハブには、毎日何百ものトランスフォーマーの実験とモデルがアップロードされています。これらの実験を行う機械学習エンジニアや学生は、PyTorch、TensorFlow/Keras、その他のさまざまなフレームワークを使用しています。これらのモデルはすでに数千の企業によって使用され、AIを搭載した製品の基盤となっています。 トランスフォーマーのモデルを本番環境で展開する場合、まずは特殊なランタイムとハードウェア上で読み込み、最適化、実行できるシリアライズされた形式にエクスポートすることをお勧めします。 このガイドでは、以下のことについて学びます: ONNXとは何か Hugging Face Optimumとは何か どのトランスフォーマーアーキテクチャがサポートされているか トランスフォーマーモデル(BERT)をONNXに変換する方法 次は何か さあ、始めましょう! 🚀 モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。 5. 次は何か トランスフォーマーモデルをONNXに正常に変換したので、最適化および量子化ツールの全セットが使用できるようになりました。次のステップとしては、以下のことが考えられます: Optimumとトランスフォーマーパイプラインを使用した高速推論にONNXモデルを使用する モデルに静的量子化を適用して、レイテンシを約3倍改善する トレーニングにONNXランタイムを使用する ONNXモデルをTensorRTに変換してGPUパフォーマンスを向上させる … モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。…

BLOOMトレーニングの技術背後

近年、ますます大規模な言語モデルの訓練が一般的になってきました。これらのモデルがさらなる研究のために公開されていない問題は頻繁に議論されますが、そのようなモデルを訓練するための技術やエンジニアリングについての隠された知識は滅多に注目されません。本記事では、1760億パラメータの言語モデルBLOOMを例に、そのようなモデルの訓練の裏側にあるハードウェアとソフトウェアの技術とエンジニアリングについて、いくつかの光を当てることを目指しています。 しかし、まず、この素晴らしい1760億パラメータモデルの訓練を可能にするために貢献してくれた企業や主要な人物やグループに感謝したいと思います。 その後、ハードウェアのセットアップと主要な技術的な構成要素について説明します。 以下はプロジェクトの要約です: 人々 このプロジェクトは、Hugging Faceの共同創設者でありCSOのThomas Wolf氏が考案しました。彼は巨大な企業と競争し、単なる夢だったものを実現し、最終的な結果をすべての人にアクセス可能にすることで、最も多くの人々にとっては夢であったものを実現しました。 この記事では、モデルの訓練のエンジニアリング側に特化しています。BLOOMの背後にある技術の最も重要な部分は、私たちにコーディングと訓練の助けを提供してくれた専門家の人々と企業です。 感謝すべき6つの主要なグループがあります: HuggingFaceのBigScienceチームは、数人の専任の従業員を捧げ、訓練を始めから終わりまで行うための方法を見つけるために、Jean Zayの計算機を超えるすべてのインフラストラクチャを提供しました。 MicrosoftのDeepSpeedチームは、DeepSpeedを開発し、後にMegatron-LMと統合しました。彼らの開発者たちはプロジェクトのニーズに多くの時間を費やし、訓練前後に素晴らしい実践的なアドバイスを提供しました。 NVIDIAのMegatron-LMチームは、Megatron-LMを開発し、私たちの多くの質問に親切に答えてくれ、一流の実践的なアドバイスを提供しました。 ジャン・ゼイのスーパーコンピュータを管理しているIDRIS / GENCIチームは、計算リソースをプロジェクトに寄付し、優れたシステム管理のサポートを提供しました。 PyTorchチームは、このプロジェクトのために基礎となる非常に強力なフレームワークを作成し、訓練の準備中に私たちをサポートし、複数のバグを修正し、PyTorchコンポーネントの使いやすさを向上させました。 BigScience Engineeringワーキンググループのボランティア プロジェクトのエンジニアリング側に貢献してくれたすべての素晴らしい人々を全て挙げることは非常に困難なので、Hugging Face以外のいくつかの主要な人物を挙げます。彼らはこのプロジェクトのエンジニアリングの基盤となりました。 Olatunji Ruwase、Deepak…

Hugging Face TransformersとHabana Gaudiを使用して、BERTを事前に学習する

このチュートリアルでは、Habana GaudiベースのDL1インスタンスを使用してBERT-baseをゼロから事前トレーニングする方法を学びます。Gaudiのコストパフォーマンスの利点を活用するためにAWSで使用します。Hugging Face Transformers、Optimum Habana、およびDatasetsライブラリを使用して、マスクされた言語モデリングを使用してBERT-baseモデルを事前トレーニングします。これは、最初のBERT事前トレーニングタスクの一つです。始める前に、ディープラーニング環境をセットアップする必要があります。 コードを表示する 以下のことを学びます: データセットの準備 トークナイザのトレーニング データセットの前処理 Habana Gaudi上でBERTを事前トレーニングする 注意:ステップ1から3は、CPUを多く使用するタスクのため、異なるインスタンスサイズで実行することができます/すべきです。 要件 始める前に、以下の要件を満たしていることを確認してください DL1インスタンスタイプのクオータを持つAWSアカウント AWS CLIがインストールされていること AWS IAMユーザーがCLIで構成され、ec2インスタンスの作成と管理の権限を持っていること 役立つリソース Hugging Face TransformersとHabana…

ハギングフェイス推論エンドポイントの始め方

機械学習モデルのトレーニングは非常に簡単になりました。特に、事前学習済みモデルと転移学習の台頭により、簡単なことが多いです。もちろん、時にはそれほど簡単ではないこともありますが、少なくとも、モデルのトレーニングはクリティカルなアプリケーションを壊すことはありませんし、お客様にサービス品質に不満を抱かせることもありません。しかし、モデルのデプロイメントは別ですね… はい、みんな経験があります。 モデルを本番環境でデプロイするには、通常、数々の手順を踏む必要があります。モデルをコンテナにパッケージ化し、インフラストラクチャをプロビジョニングし、予測APIを作成し、セキュリティを確保し、スケーリングし、監視するなどです。正直に言って、これらのプラミングを構築するのには実際の機械学習作業の貴重な時間が奪われてしまいます。残念なことに、うまくいかないこともあります。 私たちは、新しく発表されたHugging Face Inference Endpointsを使ってこの問題を解決しようと努めています。最新の状態を維持しつつ、機械学習をますます簡単にすることを目指して、Hugging Faceハブから直接機械学習モデルをお気に入りのクラウド上の管理されたインフラストラクチャに数回のクリックでデプロイできるサービスを構築しました。シンプルで安全でスケーラブルです。すべてが手に入ります。 では、これがどのように機能するかをご紹介します! Inference Endpointsでモデルをデプロイする Inference Endpointsがサポートしているタスクのリストを見て、最近AutoTrainでfood101データセット上で微調整したSwin画像分類モデルをデプロイすることにしました。このモデルの構築方法に興味がある場合は、このビデオで全体のプロセスを確認できます。 モデルページから、デプロイをクリックし、Inference Endpointsを選択します。 これにより、エンドポイントの作成ページに直接移動します。 最新のリビジョンのモデルを、eu-west-1リージョンのAWSでホストされる単一のGPUインスタンスにデプロイすることにしました。オプションで、オートスケーリングを設定することもできますし、カスタムコンテナにモデルをデプロイすることもできます。 次に、エンドポイントにアクセスできるユーザーを決定する必要があります。最もセキュアから最もセキュアまで、3つのオプションがあります: パブリック: エンドポイントはパブリックなHugging Faceサブネットで実行され、認証なしでインターネット上の誰でもアクセスできます。これを選択する前によく考えてください! プロテクテッド: エンドポイントはパブリックなHugging Faceサブネットで実行され、適切な組織トークンを持つインターネット上の誰でもアクセスできます。…

Apple SiliconでのCore MLを使用した安定した拡散を利用する

Appleのエンジニアのおかげで、Core MLを使用してApple SiliconでStable Diffusionを実行できるようになりました! このAppleのレポジトリは、🧨 Diffusersを基にした変換スクリプトと推論コードを提供しており、私たちはそれが大好きです!できるだけ簡単にするために、私たちは重みを変換し、モデルのCore MLバージョンをHugging Face Hubに保存しました。 更新:この投稿が書かれてから数週間後、私たちはネイティブのSwiftアプリを作成しました。これを使用して、自分自身のハードウェアでStable Diffusionを簡単に実行できます。私たちはMac App Storeにアプリをリリースし、他のプロジェクトがそれを使用できるようにソースコードも公開しました。 この投稿の残りの部分では、変換された重みを自分自身のコードで使用する方法や、追加の重みを変換する方法について説明します。 利用可能なチェックポイント 公式のStable Diffusionのチェックポイントはすでに変換されて使用できる状態です: Stable Diffusion v1.4:変換されたオリジナル Stable Diffusion v1.5:変換されたオリジナル Stable…

高速なトレーニングと推論 Habana Gaudi®2 vs Nvidia A100 80GB

この記事では、Habana® Gaudi®2を使用してモデルのトレーニングと推論を高速化し、🤗 Optimum Habanaを使用してより大きなモデルをトレーニングする方法について説明します。さらに、BERTの事前トレーニング、Stable Diffusion推論、およびT5-3Bファインチューニングなど、第一世代のGaudi、Gaudi2、およびNvidia A100 80GBのパフォーマンスの違いを評価するためのいくつかのベンチマークを紹介します。ネタバレ注意 – Gaudi2はトレーニングと推論の両方でNvidia A100 80GBよりも約2倍高速です! Gaudi2は、Habana Labsが設計した第2世代のAIハードウェアアクセラレータです。単一のサーバには、各々96GBのメモリを持つ8つのアクセラレータデバイスが搭載されています(第一世代のGaudiでは32GB、A100 80GBでは80GB)。Habana SDKであるSynapseAIは、第一世代のGaudiとGaudi2の両方に共通しています。つまり、🤗 Optimus Habanaは、🤗 Transformersと🤗 DiffusersライブラリとSynapseAIの間の非常に使いやすいインターフェースを提供し、第一世代のGaudiと同じようにGaudi2でも動作します!ですので、既に第一世代のGaudi用の使用準備が整ったトレーニングや推論のワークフローがある場合は、何も変更することなくGaudi2で試してみることをお勧めします。 Gaudi2へのアクセス方法 IntelとHabanaがGaudi2を利用可能にするための簡単で費用効果の高い方法の1つは、Intel Developer Cloudで利用できるようになっています。そこでGaudi2を使用するためには、以下の手順に従う必要があります: Intel…

Optimum+ONNX Runtime – Hugging Faceモデルのより簡単で高速なトレーニング

はじめに 言語、ビジョン、音声におけるトランスフォーマーベースのモデルは、複雑なマルチモーダルのユースケースをサポートするためにますます大きくなっています。モデルのサイズが増えるにつれて、これらのモデルをトレーニングし、サイズが増えるにつれてスケーリングするために必要なリソースにも直接的な影響があります。Hugging FaceとMicrosoftのONNX Runtimeチームは、大規模な言語、音声、ビジョンモデルのファインチューニングにおいて進歩をもたらすために協力しています。Hugging FaceのOptimumライブラリは、ONNX Runtimeとの統合により、多くの人気のあるHugging Faceモデルのトレーニング時間を35%以上短縮するオープンなソリューションを提供します。本稿では、Hugging Face OptimumとONNX Runtimeトレーニングエコシステムの詳細を紹介し、Optimumライブラリの利点を示すパフォーマンスの数値を提示します。 パフォーマンスの結果 以下のチャートは、Optimumを使用したHugging Faceモデルのパフォーマンスを示しており、トレーニングにONNX RuntimeとDeepSpeed ZeRO Stage 1を使用することで、39%から130%までの印象的な高速化が実現されています。パフォーマンスの測定は、ベースライン実行としてPyTorchを使用した選択されたHugging Faceモデルで行われ、2番目の実行ではトレーニングのためにONNX Runtimeのみを使用し、最終的な実行ではONNX Runtime + DeepSpeed ZeRO Stage…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us