Learn more about Search Results MPT - Page 70

GoogleがACL 2023に参加します

Posted by Malaya Jules, Program Manager, Google 今週、計算言語学協会(ACL)の第61回年次総会がオンラインで開催されています。ACLは、自然言語に関する計算手法に関連する広範な研究分野をカバーする一流のカンファレンスです。 自然言語処理と理解のリーダーであり、ACL 2023のダイヤモンドレベルスポンサーであるGoogleは、50以上の論文を発表し、様々なワークショップやチュートリアルに積極的に参加することで、この分野での最新の研究を紹介します。 ACL 2023に登録されている場合、Googleブースにぜひ訪れ、数十億人の人々のために興味深い問題を解決するためにGoogleで行われているプロジェクトについて詳しく学んでください。以下でGoogleの参加についてもっと詳しく学ぶこともできます(Googleの関連組織は太字で示されています)。 理事会および組織委員会 エリアチェアには:Dan Garrette、ワークショップチェアには:Annie Louis、出版チェアには:Lei Shu、プログラム委員会には:Vinodkumar Prabhakaran、Najoung Kim、Markus Freitagが含まれます。 注目論文 NusaCrowd:Indonesian NLPリソースのオープンソースイニシアティブ Samuel…

「PandasAIの包括的ガイド」

イントロダクション 生成AIと大規模言語モデル(LLM)は、人工知能(AI)と機械学習(ML)に新たな時代をもたらしました。これらの大規模言語モデルは、さまざまなドメインでさまざまなアプリケーションで使用され、AIに対する新たな視点を開いています。これらのモデルは、インターネット上の膨大なテキストデータでトレーニングされ、人間のような方法でテキストを生成することができます。最もよく知られているLLMの例は、OpenAIによって開発されたChatGPTです。それはオリジナルのコンテンツの作成からコードの書き込みまでさまざまなタスクを実行することができます。この記事では、LLMの1つであるPandasAIの一つの応用について説明します。PandasAIガイドは、Pythonの人気のあるPandasライブラリとOpenAIのGPTの融合と考えることができます。それはコードをあまり書かずにデータから素早く洞察を得るために非常に強力です。 学習目標 PandasとPandasAIの違いを理解する PandasAIとデータ分析と可視化の役割 PandasAIを使用して完全な探索的データ分析ワークフローを構築する 明確で簡潔で具体的なプロンプトの書き方の重要性を理解する PandasAIの制限を理解する この記事は、Data Science Blogathonの一部として公開されました。 PandasAI PandasAIは、データ分析と可視化のタスクをより簡単にするための新しいツールです。PandasAIはPythonのPandasライブラリで構築され、その作業には生成AIとLLMが使用されています。Pandasとは異なり、データを手動で分析および操作する必要がなく、PandasAIはテキストプロンプトを提供するだけでデータから洞察を生成することができます。それはあなたの助手に指示を与えるようなものであり、熟練して堪能な人間ではなく、人間のように情報を理解し処理する機械です。 この記事では、コードの例と説明を交えながら、PandasAIを使用した完全なデータ分析および可視化プロセスをレビューします。それでは、始めましょう。 OpenAIアカウントの設定とAPIキーの抽出 PandasAIライブラリを使用するには、OpenAIアカウント(既に持っていない場合)を作成し、APIキーを使用する必要があります。以下の手順で行うことができます。 https://platform.openai.comにアクセスし、個人アカウントを作成します。 アカウントにサインインします。 右上の個人をクリックします。 ドロップダウンメニューからAPIキーの表示を選択します。 新しいシークレットキーを作成します。 シークレットキーをコピーし、コンピュータ上の安全な場所に保存します。 上記の手順に従っていれば、プロジェクトで生成AIの力を活用する準備が整っています。 PandasAIのインストール…

「Spring Bootを使用して自分自身のChatGPTアプリケーションを作成する」

このブログでは、OpenAIのチャット補完APIを統合して使用し、ChatGPTの独自のバージョンを作成する方法について説明します

「Spring Bootを使用して独自のChatGPTアプリケーションを作成する」

このブログでは、OpenAIのチャット補完APIとの統合方法を説明し、それらを使用してChatGPTの独自のバージョンを作成する方法について説明します

「ChatGPTコードインタプリタを使用して、人道支援データの非構造化Excelテーブルを分析する」

新しい実験的な機能「コードインタプリター」は、ChatGPTの使用の一環としてPythonコードの生成と実行をネイティブにサポートしますデータエンジニアリングを行うためには大きな潜在能力を示しています

「OpenAI関数呼び出しの紹介」

数か月前、OpenAIは一般の人々にAPIを公開しましたこれはChatGPTの出力を体系的に利用したかった多くの開発者にとって非常に興奮するニュースでしたこのように興奮している一方で、それは...

ChatGPTを使って旅行のスケジュールを計画しましょう

「夏の旅行を計画していますが、選択肢や決定に圧倒されていますか? ChatGPTを個人的な旅行アシスタントとして頼ることを考えたことはありますか? ChatGPTはあなたの旅程を計画するのに役立つことができます...」

「データサイエンスの役割に関するGoogleのトップ50のインタビュー質問」

イントロダクション Googleでのキャリアを手に入れるためのコードを解読することは、多くのデータサイエンティスト志望者にとっての夢です。しかし、厳しいデータサイエンスの面接プロセスをクリアするにはどうすればよいのでしょうか?面接で成功するために、機械学習、統計学、プロダクトセンス、行動面をカバーするトップ50のGoogleのインタビュー質問の包括的なリストを作成しました。これらの質問に慣れて、回答の練習をしてください。これにより、面接官に印象を与え、Googleでのポジションを確保する可能性が高まります。 データサイエンスのGoogle面接プロセス Googleのデータサイエンティストの面接を通過することは、あなたのスキルと能力を評価するエキサイティングな旅です。このプロセスには、データサイエンス、問題解決、コーディング、統計学、コミュニケーションなど、さまざまなラウンドが含まれています。以下は、あなたが期待できる内容の概要です: ステージ 説明 応募の提出 Googleのキャリアウェブサイトを通じて、採用プロセスを開始するために応募と履歴書を提出します。 テクニカルな電話スクリーン 選考された場合、コーディングスキル、統計学の知識、データ分析の経験を評価するためにテクニカルな電話スクリーンが行われます。 オンサイト面接 成功した候補者は、通常、データサイエンティストや技術的な専門家との複数のラウンドからなるオンサイト面接に進みます。これらの面接では、データ分析、アルゴリズム、統計学、機械学習の概念など、より深く掘り下げたトピックについて話し合います。 コーディングと分析の課題 プログラミングスキルを評価するためにコーディングの課題に取り組み、データから洞察を抽出する能力を評価するために分析の課題に直面します。 システム設計と行動面の面接 一部の面接ではシステム設計に焦点を当て、スケーラブルなデータ処理や分析システムの設計を期待されることがあります。また、行動面の面接では、チームワーク、コミュニケーション、問題解決のアプローチを評価します。 採用委員会の審査 面接のフィードバックは採用委員会によって審査され、最終的な採用の決定が行われます。 Googleデータサイエンティストになる方法についての詳細な応募と面接のプロセスについては、当社の記事をご覧ください! データサイエンスの役職に関するトップ50のGoogleインタビューの質問と回答をまとめました。 データサイエンスのためのトップ50のGoogleインタビュー質問 機械学習、統計学、コーディングなどをカバーするトップ50のインタビュー質問の包括的なリストで、Googleのデータサイエンスの面接に備えてください。これらの質問をマスターし、あなたの専門知識を示して、Googleでのポジションを確保しましょう。 Googleの機械学習とAIに関するインタビューの質問 1.…

テキストの生成方法:トランスフォーマーを使用した言語生成のための異なるデコーディング方法の使用方法

はじめに 近年、大規模なトランスフォーマーベースの言語モデル(例えば、OpenAIの有名なGPT2モデル)が数百万のウェブページを学習することで、オープンエンドの言語生成に対する関心が高まっています。条件付きのオープンエンドの言語生成の結果は印象的です。例えば、ユニコーンに関するGPT2、XLNet、CTRLでの制御言語生成などです。改良されたトランスフォーマーアーキテクチャや大量の非教示学習データに加えて、より良いデコーディング手法も重要な役割を果たしています。 このブログ記事では、異なるデコーディング戦略の概要と、さらに重要なことに、人気のあるtransformersライブラリを使ってそれらを簡単に実装する方法を紹介します! 以下のすべての機能は、自己回帰言語生成に使用することができます(ここでは復習です)。要するに、自己回帰言語生成は、単語のシーケンスの確率分布を条件付き次の単語の分布の積として分解できるという仮定に基づいています: P(w1:T∣W0)=∏t=1TP(wt∣w1:t−1,W0) ,with w1:0=∅, P(w_{1:T} | W_0 ) = \prod_{t=1}^T P(w_{t} | w_{1: t-1}, W_0) \text{ ,with } w_{1: 0} = \emptyset, P(w1:T​∣W0​)=t=1∏T​P(wt​∣w1:t−1​,W0​) ,with w1:0​=∅,…

実践におけるFew-shot学習:GPT-Neoと🤗高速推論API

多くの機械学習のアプリケーションでは、利用可能なラベル付きデータの量が高性能なモデルの作成の障害となります。NLPの最新の発展では、大きな言語モデルで推論時にわずかな例を提供することで、この制限を克服することができることが示されています。これはFew-Shot Learningとして知られる技術です。このブログ投稿では、Few-Shot Learningとは何かを説明し、GPT-Neoという大きな言語モデルと🤗 Accelerated Inference APIを使用して独自の予測を生成する方法を探ります。 Few-Shot Learningとは何ですか? Few-Shot Learningは、機械学習モデルに非常に少量の訓練データを与えて予測を行うことを指します。つまり、推論時にいくつかの例を与えるということです。これは、標準的なファインチューニング技術とは異なり、事前に訓練されたモデルが所望のタスクに適応するために比較的大量の訓練データが必要とされるものです。 この技術は主にコンピュータビジョンで使用されてきましたが、EleutherAI GPT-NeoやOpenAI GPT-3などの最新の言語モデルを使用することで、自然言語処理(NLP)でも使用することができるようになりました。 NLPでは、Few-Shot Learningは大規模な言語モデルと組み合わせて使用することができます。これらのモデルは、大規模なテキストデータセットでの事前トレーニング中に暗黙的に多くのタスクを実行することを学習しています。これにより、モデルはわずかな例だけで関連するが以前に見たことのないタスクを理解することができます。 Few-Shot NLPの例は主に以下の3つの主要な要素から構成されます: タスクの説明:モデルが行うべきタスクの短い説明、例えば「英語からフランス語への翻訳」 例:モデルに予測してほしいことを示すいくつかの例、例えば「sea otter => loutre de mer」…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us