Learn more about Search Results 大規模な言語モデル - Page 70

24GBのコンシューマーGPUでRLHFを使用して20B LLMを微調整する

私たちは、trlとpeftの統合を正式にリリースし、Reinforcement Learningを用いたLarge Language Model (LLM)のファインチューニングを誰でも簡単に利用できるようにしました!この投稿では、既存のファインチューニング手法と競合する代替手法である理由を説明します。 peftは一般的なツールであり、多くのMLユースケースに適用できますが、特にメモリを多く必要とするRLHFにとって興味深いです! コードに直接深く入りたい場合は、TRLのドキュメンテーションページで直接例のスクリプトをチェックしてください。 イントロダクション LLMとRLHF 言語モデルとRLHF(Reinforcement Learning with Human Feedback)を組み合わせることは、ChatGPTなどの非常に強力なAIシステムを構築するための次の手段として注目されています。 RLHFを用いた言語モデルのトレーニングは、通常以下の3つのステップを含みます: 1- 特定のドメインまたは命令のコーパスで事前学習されたLLMをファインチューニングする 2- 人間によって注釈付けされたデータセットを収集し、報酬モデルをトレーニングする 3- ステップ1で得られたLLMを報酬モデルとデータセットを用いてRL(例:PPO)でさらにファインチューニングする ここで、ベースとなるLLMの選択は非常に重要です。現時点では、多くのタスクに直接使用できる「最も優れた」オープンソースのLLMは、命令にファインチューニングされたLLMです。有名なモデルとしては、BLOOMZ、Flan-T5、Flan-UL2、OPT-IMLなどがあります。これらのモデルの欠点は、そのサイズです。まともなモデルを得るには、少なくとも10B+スケールのモデルを使用する必要がありますが、モデルを単一のGPUデバイスに合わせるだけでも40GBのGPUメモリが必要です。 TRLとは何ですか? trlライブラリは、カスタムデータセットとトレーニングセットアップを使用して、誰でも簡単に自分のLMをRLでファインチューニングできるようにすることを目指しています。他の多くのアプリケーションの中で、このアルゴリズムを使用して、ポジティブな映画のレビューを生成するモデルをファインチューニングしたり、制御された生成を行ったり、モデルをより毒性のないものにしたりすることができます。…

大規模言語モデルの高速推論:Habana Gaudi2アクセラレータ上のBLOOMZ

この記事では、🤗 Optimum Habanaを使用してHabana® Gaudi®2上のBLOOMのような数千億のパラメータを持つ大規模な言語モデルを簡単に展開する方法を紹介します。これは、この記事で示されたベンチマークに示されているように、市場で現在利用可能などのどのGPUよりも高速な推論を実行することを可能にします。 モデルがますます大きくなるにつれて、プロダクション環境に展開して推論を実行することはますます困難になっています。ハードウェアとソフトウェアの両方には、これらの課題に対処するための多くのイノベーションが見られますので、効率的にこれらの課題を克服する方法を見てみましょう! BLOOMZ BLOOMは、テキストのシーケンスを完了するためにトレーニングされた1760億のパラメータの自己回帰モデルです。46の異なる言語と13のプログラミング言語を扱うことができます。BigScienceイニシアチブの一環として設計され、トレーニングされたBLOOMは、世界中の多くの研究者とエンジニアが関わったオープンサイエンスプロジェクトです。最近では、同じアーキテクチャの別のモデルがリリースされました:BLOOMZは、BLOOMのいくつかのタスクで微調整されたバージョンであり、より良い汎化およびゼロショット[^1]の機能を持っています。 このような大規模なモデルは、トレーニングおよび推論の両方においてメモリと速度の新たな課題を提起します。16ビット精度でも、1インスタンスには352 GBのメモリが必要です!現時点では、そのような多くのメモリを持つデバイスはおそらく見つけることが難しいでしょうが、Habana Gaudi2のような最先端のハードウェアを使用すると、BLOOMとBLOOMZモデルで低い待ち時間で推論を実行することができます。 Habana Gaudi2 Gaudi2は、Habana Labsによって設計された第2世代のAIハードウェアアクセラレータです。1つのサーバーには8つのアクセラレータデバイス(Habana Processing UnitsまたはHPUsと呼ばれる)があり、それぞれ96GBのメモリを提供し、非常に大きなモデルを収める余地があります。ただし、モデルをホストするだけでは非常に興味深くありません。幸いにも、Gaudi2はその点で優れています:そのアーキテクチャは、アクセラレータが並列で一般行列乗算(GeMM)およびその他の操作を実行できるようにするため、深層学習ワークフローを高速化します。これらの特徴により、Gaudi2はLLMのトレーニングおよび推論の優れた候補となります。 HabanaのSDKであるSynapseAI™は、LLMトレーニングおよび推論を高速化するためにPyTorchとDeepSpeedをサポートしています。SynapseAIグラフコンパイラは、グラフに蓄積された操作の実行を最適化します(例:オペレータの統合、データレイアウトの管理、並列化、パイプライニングとメモリ管理、およびグラフレベルの最適化)。 さらに、HPUグラフとDeepSpeed-inferenceのサポートは、最近SynapseAIに導入され、以下のベンチマークに示すようにレイテンシに敏感なアプリケーションに適しています。 これらの機能は、🤗 Optimum Habanaライブラリに統合されており、Gaudiにモデルを展開することは非常に簡単です。こちらのクイックスタートページをご覧ください。 Gaudi2にアクセスしたい場合は、Intel Developer Cloudにアクセスし、このガイドに従ってください。…

StarCoder:コードのための最先端のLLM

StarCoderの紹介 StarCoderとStarCoderBaseは、GitHubからの許可を得たデータを使用してトレーニングされた大規模な言語モデルです。これらのモデルは、80以上のプログラミング言語、Gitのコミット、GitHubの課題、Jupyterノートブックなど、様々な情報源からデータを取得しています。LLaMAと同様に、私たちは1兆トークンのために約15兆パラメータのモデルをトレーニングしました。また、35兆のPythonトークンに対してStarCoderBaseモデルを微調整し、新しいモデルであるStarCoderと呼びます。 StarCoderBaseは、人気のあるプログラミングベンチマークにおいて既存のオープンなコードモデルよりも優れたパフォーマンスを発揮し、GitHub Copilotの初期バージョンで使用された「code-cushman-001」といったクローズドモデルとも匹敵する結果を示しました。StarCoderモデルは、8,000以上のトークンのコンテキスト長を持つため、他のオープンなLLMよりも多くの入力を処理することができます。これにより、さまざまな興味深いアプリケーションが可能となります。例えば、StarCoderモデルに対して対話のシリーズをプロンプトとして与えることで、技術アシスタントとしての機能を果たすことができます。さらに、これらのモデルはコードの自動補完、指示に基づいたコードの変更、コードスニペットの自然言語による説明などにも使用することができます。私たちは、改善されたPIIの削除パイプライン、新しい帰属追跡ツールなど、安全なオープンモデルのリリースに向けていくつかの重要な手順を踏んでいます。また、StarCoderは改良されたOpenRAILライセンスのもとで一般に公開されています。この更新されたライセンスにより、企業がモデルを製品に統合するプロセスが簡素化されます。StarCoderモデルの強力なパフォーマンスにより、コミュニティは自分たちのユースケースや製品に適応させるための堅固な基盤としてこれを活用することができると考えています。 評価 私たちはStarCoderといくつかの類似モデルについて、さまざまなベンチマークで徹底的に評価を行いました。人気のあるPythonベンチマークであるHumanEvalでは、関数のシグネチャとドキュメント文字列に基づいてモデルが関数を完成させることができるかどうかをテストしました。StarCoderとStarCoderBaseは、PaLM、LaMDA、LLaMAなどの最大のモデルを上回るパフォーマンスを発揮しましたが、それらよりも遥かに小さなサイズであるという特徴も持っています。また、CodeGen-16B-MonoやOpenAIのcode-cushman-001(12B)モデルよりも優れた結果を示しました。私たちはまた、モデルの失敗例として、通常は練習の一部として使用されるため、# Solution hereというコードを生成することがあることに気付きました。実際の解決策を生成させるために、プロンプトとして<filename>solutions/solution_1.py\n# Here is the correct implementation of the code exerciseを追加しました。これにより、StarCoderのHumanEvalスコアは34%から40%以上に向上し、オープンモデルの最新のベンチマーク結果を更新しました。CodeGenとStarCoderBaseに対してもこのプロンプトを試しましたが、あまり違いは観察されませんでした。 StarCoderの興味深い特徴の一つは、多言語対応であることです。そのため、MultiPL-Eという多言語の拡張を使用して評価を行いました。その結果、StarCoderは多くの言語においてcode-cushman-001と匹敵または優れたパフォーマンスを発揮することがわかりました。また、DS-1000というデータサイエンスのベンチマークでも、StarCoderは他のオープンアクセスモデルを圧倒する結果を示しました。しかし、コード補完以外にもモデルができることを見てみましょう! 技術アシスタント 徹底的な評価の結果、StarCoderはコードの記述に非常に優れていることがわかりました。しかし、ドキュメンテーションやGitHubの課題などの情報を大量に学習しているため、技術アシスタントとして使用できるかどうかもテストしたかったのです。AnthropicのHHHプロンプトに触発されて、私たちはTech Assistant Promptを作成しました。驚くべきことに、プロンプトだけでモデルは技術アシスタントとして機能し、プログラミングに関連する要求に答えることができます! トレーニングデータ このモデルは、The…

アシストされた生成:低遅延テキスト生成への新たな方向

大規模な言語モデルは最近注目を集めており、多くの企業がそれらを拡大し、新たな機能を開放するために多大なリソースを投資しています。しかし、私たち人間は注意力が減少しているため、彼らの遅い応答時間も嫌いです。レイテンシは良好なユーザーエクスペリエンスにおいて重要であり、低品質なものである場合でも(たとえば、コード補完において)小さいモデルが使用されることがよくあります。 なぜテキスト生成は遅いのでしょうか?破産せずに低レイテンシな大規模な言語モデルを展開する障害物は何でしょうか?このブログ記事では、自己回帰的なテキスト生成のボトルネックを再検討し、レイテンシの問題に対処するための新しいデコーディング手法を紹介します。私たちの新しい手法であるアシスト付き生成を使用することで、コモディティハードウェアでレイテンシを最大10倍まで削減できることがわかります! テキスト生成のレイテンシの理解 現代のテキスト生成の核心は理解しやすいです。中心となる部分であるMLモデルを見てみましょう。その入力には、これまでに生成されたテキストや、モデル固有のコンポーネント(Whisperのようなオーディオ入力もあります)など、テキストシーケンスが含まれます。モデルは入力を受け取り、順番に各層を通って次のトークンの非正規化された対数確率(ログット)を予測します。トークンは、モデルによって単語全体、サブワード、または個々の文字で構成されることがあります。テキスト生成のこの部分について詳しく知りたい場合は、イラスト付きのGPT-2を参照してください。 モデルの順方向パスによって次のトークンのログットが得られますが、これらのログットを自由に操作することができます(たとえば、望ましくない単語やシーケンスの確率を0に設定する)。テキスト生成の次のステップは、これらのログットから次のトークンを選択することです。一般的な戦略は、最も可能性の高いトークンを選ぶことで、これはグリーディデコーディングとして知られています。また、トークンの分布からサンプリングすることも行います。モデルの順方向パスと次のトークンの選択を反復的に連結することで、テキスト生成が行われます。デコーディング手法に関しては、この説明はアイスバーグの一角に過ぎません。詳細な探求のために、テキスト生成に関する当社のブログ記事を参照してください。 上記の説明から、テキスト生成のレイテンシのボトルネックは明確です。大規模なモデルの順方向パスを実行することは遅いため、連続して何百回も実行する必要があります。しかし、さらに詳しく見てみましょう。なぜ順方向パスが遅いのでしょうか?順方向パスは通常、行列の乗算によって支配されます。対応するウィキペディアのセクションを素早く訪れると、この操作における制限はメモリ帯域幅であることがわかります(たとえば、GPU RAMからGPUコンピュートコアへ)。つまり、順方向パスのボトルネックは、デバイスの計算コアにモデルのレイヤーの重みを読み込むことから来ており、計算自体ではありません。 現時点では、テキスト生成の最大の効果を得るために探求できる3つの主な方法がありますが、すべてがモデルの順方向パスのパフォーマンスに対処しています。まず第一に、ハードウェア固有のモデルの最適化があります。たとえば、デバイスがFlash Attentionに対応している場合、操作の並べ替えによってアテンションレイヤーの処理を高速化することができます。また、モデルのウェイトのサイズを削減するINT8量子化もあります。 第二に、同時にテキスト生成のリクエストがあることがわかっている場合、入力をバッチ化し、小さなレイテンシのペナルティを支払いながらスループットを大幅に増加させることができます。デバイスに読み込まれたモデルのレイヤーのウェイトは、複数の入力行で並列に使用されるため、ほぼ同じメモリ帯域幅の負荷でより多くのトークンを出力することができます。バッチ処理の問題は、追加のデバイスメモリが必要であることです(またはメモリをどこかにオフロードする必要があります)-このスペクトルの終端では、レイテンシを犠牲にしてスループットを最適化するFlexGenなどのプロジェクトが見られます。 # バッチ化された生成の影響を示す例。計測デバイス: RTX3090 from transformers import AutoModelForCausalLM, AutoTokenizer import time tokenizer = AutoTokenizer.from_pretrained("distilgpt2") model…

単一のGPUでChatgptのようなチャットボットをROCmで実行する

はじめに ChatGPTは、OpenAIの画期的な言語モデルであり、人工知能の領域で影響力のある存在となり、様々なセクターでAIアプリケーションの多様な活用を可能にしています。その驚異的な人間のようなテキストの理解力と生成力により、ChatGPTは顧客サポートから創造的な文章作成まで、さまざまな産業を変革し、貴重な研究ツールとしても使われています。 OPT、LLAMA、Alpaca、Vicunaなど、大規模な言語モデルのオープンソース化にはさまざまな取り組みが行われていますが、その中でもVicunaはAMD GPU上でROCmを使用してVicuna 13Bモデルを実行する方法を説明します。 Vicunaとは何ですか? Vicunaは、UCバークレー、CMU、スタンフォード、UCサンディエゴのチームによって開発された13兆パラメータを持つオープンソースのチャットボットです。Vicunaは、LLAMAベースモデルを使用して、ShareGPT.comからの約70,000件のユーザー共有会話を収集し、公開APIを介してファインチューニングしました。GPT-4を参照とした初期の評価では、Vicuna-13BはOpenAI ChatGPTと比較して90%以上の品質を実現しています。 それはわずか数週間前の4月11日にGithubでリリースされました。Vicunaのデータセット、トレーニングコード、評価メトリック、トレーニングコストはすべて公開されており、一般のユーザーにとって費用対効果の高いソリューションとなっています。 Vicunaの詳細については、https://vicuna.lmsys.org をご覧ください。 なぜ量子化されたGPTモデルが必要なのですか? Vicuna-13Bモデルをfp16で実行するには、約28GBのGPU RAMが必要です。メモリの使用量をさらに減らすためには、最適化技術が必要です。最近発表された研究論文「GPTQ」では、低ビット精度を持つGPTモデルの正確な事後トレーニング量子化が提案されています。以下の図に示すように、パラメータが10Bを超えるモデルの場合、4ビットまたは3ビットのGPTQはfp16と同等の精度を実現することができます。 さらに、これらのモデルの大きなパラメータは、GPTトークン生成が計算(TFLOPsまたはTOPs)そのものよりもメモリ帯域幅(GB/s)によって制約されるため、GPTのレイテンシに深刻な影響を与えます。そのため、メモリに制約のある状況下では、量子化モデルはトークン生成のレイテンシを低下させません。GPTQの量子化の論文とGitHubリポジトリを参照してください。 この技術を活用することで、Hugging Faceからいくつかの4ビット量子化されたVicunaモデルが利用可能です。 ROCmを使用してAMD GPUでVicuna 13Bモデルを実行する AMD GPUでVicuna 13Bモデルを実行するには、AMD GPUの高速化のためのオープンソースソフトウェアプラットフォームであるROCm(Radeon…

Hugging FaceとIBMは、AIビルダー向けの次世代エンタープライズスタジオであるwatsonx.aiにおいてパートナーシップを結成しました

すべてのハイプを置いておくと、AIが社会とビジネスに与える深い影響を否定するのは難しいです。スタートアップから企業まで、公共部門まで、私たちが話すすべての顧客は、大規模な言語モデルと生成的AIを実験し、最も有望なユースケースを特定し、徐々に本番環境に導入することに忙しいと言っています。 顧客から最もよくいただくコメントは、1つのモデルがすべてを支配するわけではないということです。彼らは、各ユースケースに最適なモデルを構築し、企業データに最大の関連性を持たせながら、計算予算を最適化する価値を理解しています。もちろん、プライバシーと知的財産も最優先の関心事であり、顧客は完全な制御を確保したいと考えています。 AIがすべての部門やビジネスユニットに浸透するにつれて、顧客は多くの異なるモデルのトレーニングと展開の必要性も認識しています。大規模な多国籍組織では、いつでも何百、何千ものモデルを実行することがあります。AIの革新のペースに応じて、より新しいパフォーマンスの高いモデルアーキテクチャは、顧客が予想よりも早くモデルを置き換えることになります。そのため、新しいモデルを迅速かつシームレスに本番環境にトレーニングおよび展開する必要性が強まります。 これは、標準化と自動化のみで実現できます。組織は、新規プロジェクトのためにモデル、ツール、およびインフラをゼロから構築する余裕はありません。幸いなことに、ここ数年間ではいくつかの非常にポジティブな進展がありました: モデルの標準化:Transformerアーキテクチャは、自然言語処理、コンピュータビジョン、音声、音響などのDeep Learningアプリケーションにおいて事実上の標準となりました。今では、多くのユースケースで優れたパフォーマンスを発揮するツールやワークフローを構築することが容易になりました。 事前学習済みモデル:何十万もの事前学習済みモデルがすぐに利用可能です。Hugging Face上で直接発見し、テストでき、プロジェクトに向けてすぐに有望なモデルを選定することができます。 オープンソースライブラリ:Hugging Faceのライブラリを使用すると、1行のコードで事前学習済みモデルをダウンロードし、数分でデータを試すことができます。トレーニングから展開、ハードウェアの最適化まで、顧客はコミュニティ主導の一貫したツールセットに頼ることができます。これらのツールは、彼らのノートパソコンから本番環境まで、どこでも同じように動作します。 さらに、私たちのクラウドパートナーシップにより、顧客はHugging Faceのモデルとライブラリをインフラストラクチャのプロビジョニングや技術環境の構築に心配することなく、任意のスケールで使用することができます。これにより、高品質なモデルを迅速に提供することが容易になり、車輪の再発明をする必要がありません。 AWSとのAmazon SageMaker、およびMicrosoftとのAzure Machine Learningとのコラボレーションに続いて、私たちはIBMとも協力して、彼らの新しいAIスタジオ、watsonx.aiでの作業に興奮しています。watsonx.aiは、従来のMLと新しい生成的AIの能力の両方をトレーニング、検証、チューニング、および展開するための次世代のエンタープライズスタジオです。これらの能力は、ファウンデーションモデルによって強化されます。 IBMは、watsonx.aiのコアにオープンソースを採用することを決定しました。私たちも同じ意見です!watsonx.aiは、RedHat OpenShift上に構築され、クラウドとオンプレミスの両方で利用できます。これは、厳格なコンプライアンスルールによりクラウドを使用できない顧客や、機密データをインフラストラクチャ上で扱うことにより快適な顧客にとって、素晴らしいニュースです。これまで、これらの顧客はしばしば社内で独自のMLプラットフォームを構築する必要がありました。しかし、彼らは今や、標準のDevOpsツールを使用して展開および管理されるオープンソースの代替品を手に入れることができます。 watsonx.aiの内部では、transformers(10万以上のGitHubスター!)、accelerate、peft、およびText Generation Inferenceサーバーなど、Hugging Faceのオープンソースライブラリが多数統合されています。私たちはIBMと協力し、watsonx AIおよびデータプラットフォームに取り組んでいます。これにより、Hugging Faceの顧客は、Hugging…

Hugging Faceは、Microsoftとの協力により、Azure上でHugging Faceモデルカタログを開始します

本日、Hugging FaceはMicrosoftとの協力を拡大し、Hugging Face HubからオープンソースモデルをAzure Machine Learningにもたらすことを発表しました。私たちが共同で新しいHugging Face Hubモデルカタログを作成し、Azure Machine Learning Studio内で直接利用できるようにしました。このカタログには、Hugging Face Hubからの最も人気のあるTransformersモデルが数千点含まれています。この新しい統合により、数クリックでHugging Faceモデルを管理されたエンドポイントにデプロイし、安全かつスケーラブルなAzureインフラ上で実行することができます。 この新しいエクスペリエンスは、昨年Azure Marketplaceで新しい管理アプリとしてAzure Machine Learning Endpointsを立ち上げた際に発表した戦略的パートナーシップを拡大しています。以前のマーケットプレースのソリューションは有望な初期段階でしたが、Azure Machine Learning内でのネイティブな統合を通じてのみ克服できる制約がありました。これらの課題に対処し、お客様のエクスペリエンスを向上させるために、私たちはMicrosoftと協力して、Azure Machine Learning Studio内のHugging…

Hugging Faceがフランスのデータ保護機関の強化サポートプログラムに選ばれました

このブログ投稿は元々LinkedInで2023年05月15日に公開されました。 お知らせです。Hugging Faceは、CNIL(フランスのデータ保護機関)によってそのエンハンストサポートプログラムの対象に選ばれました!この新しいプログラムは、40社以上の候補者の中から「経済的発展の強いポテンシャルを持つ」と評価された3社を選出し、データ保護に関する義務の理解と実装においてサポートを受けることができます。このようなサポートは、急速に進化する人工知能の分野において、データ保護に関する困難で必要不可欠な取り組みです。 個人のプライバシー権を尊重するという点では、機械学習と人工知能の最近の進展は新たな問題を提起し、新たな課題をもたらしています。Hugging Faceの取り組みや協力関係において、これらの課題に特に敏感であることを認識しています。私たちが主催するBigScienceワークショップは、多くの異なる国や機関からの数百人の研究者との協力により、データ選択とガバナンス、データ処理、モデル共有をカバーした、プライバシーを中心に置いた初の大規模な言語モデルトレーニングの取り組みでした。また、ServiceNowと共同主催した最近のBigCodeプロジェクトも、プライバシーのリスクに対処するための重要なリソースを割り当て、他のプロジェクトにも恩恵をもたらす擬名化をサポートする新しいツールの開発に注力しました。これらの取り組みにより、AI開発プロセスのさまざまなレベルで技術的に必要で実現可能なことをより良く理解し、個人データに関連する法的要件とリスクに対処することができます。 CNILからの支援プログラムは、フランスのデータ保護機関としての専門知識と役割を活かし、GDPRの順守を前進させるための私たちの広範な取り組みをサポートする上で重要な役割を果たします。また、プライバシーやデータ保護に関するユーザーコミュニティの質問に対して明確な回答を提供することも期待しています。より先見の目を持ってこれらの問題に取り組み、個人のデータ権利を尊重する素晴らしい新しい機械学習技術の開発に貢献できることを楽しみにしています!

基礎モデルは人間のようにデータにラベルを付けることができますか?

ChatGPTの登場以来、Large Language Models(LLM)の開発に前例のない成長が見られ、特にプロンプト形式の指示に従うように微調整されたチャットモデルの開発が増えてきました。しかし、これらのモデルの比較は、その性能を厳密にテストするために設計されたベンチマークの不足により明確ではありません。指示とチャットモデルの評価は本質的に困難であり、ユーザーの好みの大部分は質的なスタイルに集約されていますが、過去のNLP評価ははるかに定義されていました。 このような状況で、新しい大規模言語モデル(LLM)が「モデルはChatGPTに対してN%の時間で優先される」という調子でリリースされるのはよくあることですが、その文から省かれているのは、そのモデルがGPT-4ベースの評価スキームで優先されるという事実です。これらのポイントが示そうとしているのは、異なる測定の代理となるものです:人間のラベラーが提供するスコア。人間のフィードバックから強化学習でモデルを訓練するプロセス(RLHF)は、2つのモデル補完を比較するためのインターフェースとデータを増やしました。このデータはRLHFプロセスで使用され、優先されるテキストを予測する報酬モデルを訓練するために使用されますが、モデルの出力を評価するための評価とランキングのアイデアは、より一般的なツールとなっています。 ここでは、ブラインドテストセットのinstructとcode-instructの分割それぞれからの例を示します。 反復速度の観点では、言語モデルを使用してモデルの出力を評価することは非常に効率的ですが、重要な要素が欠けています:下流のツールショートカットが元の測定形式と整合しているかどうかを調査することです。このブログ投稿では、オープンLLMリーダーボード評価スイートを拡張することで、選択したLLMから得られるデータラベルを信頼できるかどうかを詳しく調べます。 LLMSYS、nomic / GPT4Allなどのリーダーボードが登場し始めましたが、モデルの能力を比較するための完全なソースが必要です。一部のモデルは、既存のNLPベンチマークを使用して質問応答の能力を示すことができ、一部はオープンエンドのチャットからのランキングをクラウドソーシングしています。より一般的な評価の全体像を提示するために、Hugging Face Open LLMリーダーボードは、自動化された学術ベンチマーク、プロの人間のラベル、およびGPT-4の評価を含むように拡張されました。 目次 オープンソースモデルの評価 関連研究 GPT-4評価の例 さらなる実験 まとめとディスカッション リソースと引用 オープンソースモデルの評価 ヒトがデータをキュレートする必要があるトレーニングプロセスのどのポイントでもコストがかかります。これまでに、AnthropicのHHHデータ、OpenAssistantの対話ランキング、またはOpenAIのLearning to Summarize /…

Hugging FaceとAMDは、CPUおよびGPUプラットフォーム向けの最先端モデルの高速化に関するパートナーシップを結んでいます

言語モデル、大規模な言語モデル、または基盤モデル、トランスフォーマーは、事前学習、微調整、および推論において大量の計算を必要とします。Hugging Faceは、開発者や組織が最大のパフォーマンスを得るために、ハードウェア企業と協力して、各チップのアクセラレーション機能を活用してきました。 本日、私たちはAMDが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。私たちのCEOであるClement Delangueが、サンフランシスコで行われたAMDのデータセンターおよびAIテクノロジープレミアで基調講演を行い、このエキサイティングな新しい協力関係を発表しました。 AMDとHugging Faceは、AMDのCPUおよびGPU上で最先端のトランスフォーマーパフォーマンスを提供するために協力しています。このパートナーシップは、Hugging Faceコミュニティ全体にとって非常に良いニュースであり、近々、最新のAMDプラットフォームをトレーニングおよび推論に活用することができるようになります。 長年にわたり、ディープラーニングハードウェアの選択肢は限られており、価格と供給は懸念事項となっています。この新しいパートナーシップは、競争に対抗するだけでなく、市場の動向を緩和するのに役立ちます。さらに、新しいコストパフォーマンスの基準を設定することも期待されます。 サポートされるハードウェアプラットフォーム GPU側では、AMDとHugging Faceはまず、エンタープライズグレードのInstinct MI2xxおよびMI3xxファミリー、次に、カスタマーグレードのRadeon Navi3xファミリーで協力します。AMDの最近のテストでは、MI250が直接競合他社よりもBERT-Largeを1.2倍、GPT2-Largeを1.4倍高速にトレーニングすることを報告しています。 CPU側では、両社はクライアントRyzenおよびサーバーEPYC CPUの推論の最適化に取り組みます。いくつかの以前の投稿で議論したように、CPUはトランスフォーマーの推論において優れたオプションになり得ます。特に、量子化などのモデル圧縮技術と組み合わせた場合です。 最後に、この協力関係には、低い電力要件で驚異的なパフォーマンスを発揮するAlveo V70 AIアクセラレータも含まれます。 サポートされるモデルアーキテクチャとフレームワーク 私たちは、自然言語処理、コンピュータビジョン、音声などの最先端のトランスフォーマーアーキテクチャ(BERT、DistilBERT、ROBERTA、Vision Transformer、CLIP、Wav2Vec2など)をサポートする予定です。もちろん、生成型AIモデル(GPT2、GPT-NeoX、T5、OPT、LLaMAなど)、私たち自身のBLOOMおよびStarCoderモデルも利用可能です。最後に、ResNetやResNextのようなより伝統的なコンピュータビジョンモデル、そして深層学習の推薦モデルにも初めて対応します。 これらのモデルをPyTorch、TensorFlow、およびONNX Runtime向けに上記のプラットフォームでテストおよび検証するために最善を尽くします。すべてのモデルが、すべてのフレームワークまたはすべてのハードウェアプラットフォームでトレーニングおよび推論に利用可能であるわけではないことを覚えておいてください。 今後の展望…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us