Learn more about Search Results A - Page 701

「Plotly プロットでインド数字システムの表記を使用する」

「私は、伝統的な「Millions(百万)」と「Billions(十億)」の表記法を、より文化的に関連する「Lacs(ラック)」と「Crores(クロール)」で置き換えることを目指しました」

情報とエントロピー

1948年、数学者のクロード・E・シャノンが「通信の数学的理論」という記事を発表し、機械学習における重要な概念であるエントロピーを紹介しましたエントロピーとは…

「大規模言語モデル:現実世界のCXアプリケーションの包括的な分析」

大規模言語モデルを使用して、次世代の顧客体験を実現しよう:文脈に基づく応答、感情分析、パーソナライズされた推奨などを探索してください

「コンテキストの解読:NLPにおける単語ベクトル化技術」

「あなたは自国から遠く離れた新しい町に引っ越しましたそこで偶然、コーヒーショップで誰かにぶつかりましたあなたと同じくらいの年の若い女性で、すぐに二人は会話に夢中になりましたそれは…」

新しい研究によって、テキストをスムーズに音声化することができるようになりました | Google

テキスト音声(マルチモーダルモデル)のトレーニングには独自の問題がありますオーディオサンプルレートが高い場合、オーディオのシーケンス長は対応するテキストよりもはるかに長くなりますテキストと…

パンダの文字列操作を高速化する

私は飽きて、文字列の操作方法とそれがパンダデータフレームのパフォーマンスにどのように影響するかをベンチマークすることに決めましたよく知られているように、パンダデータフレームは成長し続けると奇妙な動作をします...

「ROUGEメトリクス:大規模言語モデルにおける要約の評価」

「従来のモデルにおいて使用してきた指標であるAccuracy、F1スコア、またはRecallなどは、生成モデルの結果を評価するのに役立ちませんこれらのモデルでは、...」

「データサイエンスとビジネスアナリティクスを学び、イノベーションと成長を推進しましょう」

この記事は、データサイエンスとビジネスアナリティクスの概要を提供していますまた、これらのトピックの重要性についても簡単に紹介していますビジネスにとってこれらのトピックは重要です

プラグ可能な回折ニューラルネットワーク(P-DNN):内部プラグインを切り替えることによって、様々なタスクを認識するために適用できるカスケードメタサーフェスを利用する一般的なパラダイム

ディープラーニングは、人間の脳に触発された機械学習技術であり、画像処理、画像認識、音声認識、言語翻訳など、さまざまな領域で応用されています。しかし、電子コンピュータに大きく依存しており、計算上の制約やフォンノイマンアーキテクチャによるパフォーマンスのボトルネックや高いエネルギー消費を引き起こします。光ニューラルネットワークは、光を最適化し、高速で並列かつエネルギー効率の良い処理を実現することで、これらの問題に対する解決策を提供します。 著者らは、ONNの再構成性の問題に対する革新的な解決策として、P-DNNを紹介しています。新しいタスクが発生した場合に完全な再学習が必要な従来の方法とは異なり、P-DNNはネットワーク内の差し替え可能な値を交換することで認識タスクを切り替えることができます。この機能により、ネットワークの柔軟性が向上し、計算リソースの消費とトレーニング時間を効果的に削減することができます。研究者らは、手書き数字およびファッションの入力を使用して、二層のカスケードメタサーフェスを使用してこのアプローチを実証しています。 P-DNNアーキテクチャには、共通の前処理層と代替のタスク固有の分類層が含まれています。システムは光学的回折理論に基づいてトレーニングされ、各層の光ニューロンはメタサーフェス内のメタアトムによって表されます。トレーニングフェーズでは、確率的勾配降下法と誤差逆伝播法を使用して、メタサーフェスのコンポーネントのパラメータを最適化します。この記事では、転移学習に基づく最適化フローが強調されており、システムがさまざまな分類タスクに対して高い精度を達成できるようになっています。P-DNNフレームワークを使用した数字およびファッションの分類タスクの結果が示されています。シミュレーションおよび実験タスクの両方で、90%以上の高い精度が示されています。 差し替え可能な回折ニューラルネットワークは、光ニューラルネットワークを活用して従来のディープラーニングの制約を解消するソリューションとなります。これにより、分類タスクに限定されず、自動運転における実物体検出や顕微鏡画像のインテリジェントなオブジェクトフィルタリングなど、さまざまな具体的なタスクに対応することができます。エネルギー効率の高い、高い計算能力を持つシステムを提供します。

「ベイズフローネットワークの公開:生成モデリングの新たなフロンティア」

生成モデリングは、モデルが入力データのパターンを発見することを学ぶ教師なし機械学習の一環です。この知識を活用して、モデルはオリジナルのトレーニングデータセットに関連する新しいデータを自己生成することができます。生成AIの分野では、自己回帰モデル、深層VAE、拡散モデルなど、使用されるネットワークにおいて数多くの進歩がありました。しかし、これらのモデルは連続的または離散的なデータの場合には欠点を持つ傾向があります。 研究者たちは、ベイジアンフローネットワーク(BFN)と呼ばれる新しいタイプの生成モデルを提案しました。BFNは、アリスとボブを使って考えることができます。ボブは基本的な初期分布から始めます。彼はそのパラメータをニューラルネットワークに使用して新しい「出力分布」のパラメータを取得します。アリスは計画的な方法でデータにノイズを加え、それを「送信者分布」とします。ボブは出力分布と同じノイズを組み合わせて「受信者分布」を作成します。彼は出力分布に基づいてデータのすべての可能な値に対して仮想的な送信者分布を結合し、それらの確率に従って考慮します。 アリスは送信者分布からサンプルをボブに送ります。ボブはこのサンプルに基づいてベイジアンの規則に従って初期分布を更新します。初期分布が各データ変数を個別にモデル化している場合、更新は容易に行われます。ボブは複数のステップでこのプロセスを繰り返します。最終的に、彼の予測は十分に正確になり、アリスはノイズのないデータを送信することができます。 次に説明されたプロセスは、nステップの損失関数を作成し、無限のステップ数を考慮することで連続時間に拡張することもできます。連続時間では、ベイジアンの更新はデータからネットワークへの情報のベイジアンフローとなります。連続時間の損失を使用してトレーニングされたBFNは、推論とサンプリングの際に任意の数の離散ステップで実行でき、ステップ数が増えるにつれて性能が向上します。 連続データの場合、BFNは最も関連性が高く、変分拡散モデルと非常に似た連続時間の損失関数を持っています。この場合の主な違いは、BFNではネットワークの入力が変分拡散や他の連続拡散モデルよりもはるかにノイズが少ないことです。これは一般的に、BFNの生成プロセスが固定された事前分布のパラメータから始まる一方、拡散モデルの生成プロセスは純粋なノイズから始まるためです。 研究者たちは、BFNのフレームワークを連続的な、離散的な、離散化されたデータに適用することを提案しました。実験結果は、CIFAR-10(32×32の8ビットカラー画像)、動的に2値化されたMNIST(28×28の2値化された手書き数字の画像)、およびtext8(長さ256の文字列シーケンス、サイズ27のアルファベット)を対象に行われ、BFNがすべてのベンチマークで優れた性能を発揮しました。この研究は、生成モデリングにおけるBFNへの新たな視点を提供し、この分野でのさらなる可能性を開拓しました。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us