Learn more about Search Results r AI - Page 6
- You may be interested
- 中国の研究者が、ビデオ・LLaVAを紹介しま...
- 「TidyBotでの掃除」
- 生成AIにおけるプロンプトエンジニアリン...
- 「ジオスペーシャルデータエンジニアリン...
- Hugging Face Optimumを使用して、Transfo...
- 「Amazon SageMakerでのRayを使用した効果...
- AIにおける継続的学習の現状について
- 「AIモデルと化学者の洞察を組み合わせて...
- ChatGPTを使ってどのように簡単に何でも学...
- 「Zenの共同創設者兼CTO、イオン・アレク...
- 「伝統的な機械学習はまだ重要ですか?」
- このAI論文は、周波数領域での差分プライ...
- Amazon SageMakerのHugging Face LLM推論...
- Google AIは、LLMsへの負担を軽減する新し...
- 「AIとニューロモーフィックコンピューテ...
「FinTech API管理におけるAIの力を解き放つ:製品マネージャーのための包括的なガイド」
この包括的なガイドでは、AIが金融技術のAPI管理に果たす変革的な役割を探求し、各セクションごとに実世界の例を提供していますAIによる洞察力や異常検知からAIによる設計、テスト、セキュリティ、そして個人化されたユーザーエクスペリエンスまで、金融技術のプロダクトマネージャーはAIの力を活用してオペレーションを最適化し、セキュリティを強化し、提供を行わなければなりません
このAI論文は、デュアル1-Dヒートマップを使用したリアルタイムマルチパーソンポーズ推定の画期的な技術であるRTMOを紹介しています
姿勢推定とは、物体の位置と方向を空間上で決定することを含む分野であり、継続的に新しい手法を開発して精度とパフォーマンスを向上させてきました。清華深圳国際研究大学院、上海AIラボ、南洋理工大学の研究者たちは、最近、新しいRTMOフレームワークを開発することでこの分野に貢献しました。このフレームワークは、姿勢推定の精度と効率を向上させるポテンシャルを持ち、ロボット工学、拡張現実、仮想現実など、さまざまなアプリケーションに大きな影響を与える可能性があります。 RTMOは既存の手法における精度とリアルタイム性のトレードオフを解消するために設計されたワンステージの姿勢推定フレームワークです。RTMOは座標の分類と密な予測モデルを統合し、トップダウンアプローチと同等の精度を実現しながら、高速性を維持することで、他のワンステージの姿勢推定器を凌駕しています。 リアルタイムのマルチパーソン姿勢推定はコンピュータビジョンの課題であり、既存の手法は速度と精度のバランスをとるために支援が必要です。トップダウンアプローチまたはワンステージアプローチのいずれかには、推論時間または精度の制約があります。RTMOはワンステージの姿勢推定フレームワークであり、YOLOアーキテクチャと座標の分類を組み合わせています。RTMOは動的座標分類器と特別な損失関数を用いて課題を解決し、COCOでの高い平均適合度を維持しながら、リアルタイムのパフォーマンスを実現しています。 この研究では、YOLOのようなアーキテクチャを使用し、背骨とハイブリッドエンコーダを持つRTMOというリアルタイムのマルチパーソン姿勢推定フレームワークを提案しています。デュアル畳み込みブロックは各空間レベルでスコアとポーズ特徴を生成します。この手法は動的座標分類器と特別な損失関数を用いて、座標の分類と密な予測モデルの非互換性に対処しています。動的ビンエンコーディングを使用してビンごとの表現を作成し、クラス分類タスクにはガウスラベルスムージングと交差エントロピー損失を用いています。 RTMOは、高い精度とリアルタイム性を備えたワンステージの姿勢推定フレームワークであり、先端のワンステージ姿勢推定器よりも優れた性能を発揮し、同じ背骨を使用しておよそ9倍速く動作します。最大モデルのRTMO-lはCOCO val2017で74.8%のAPを達成し、単一のV100 GPUで秒あたり141フレームを実行します。異なるシナリオで、RTMOシリーズはパフォーマンスと速度で同等の軽量なワンステージ手法を上回り、効率と正確性を示しています。追加のトレーニングデータを使用することで、RTMO-lは最新の81.7の平均適合度を達成します。このフレームワークは、各キーポイントに対して頑強かつコンテキスト感知型の予測を容易にする空間的に正確なヒートマップを生成します。 https://arxiv.org/abs/2312.07526v1 まとめると、この研究の要点は以下の通りです: RTMOは高い精度とリアルタイム性を持つ姿勢推定フレームワークです。 RTMOはYOLOアーキテクチャ内で座標の分類をシームレスに統合しています。 RTMOは、座標ビンを使用した革新的な座標の分類技術を活用し、正確なキーポイントの位置特定を実現しています。 RTMOは、先端のワンステージ姿勢推定器を凌駕し、COCOで高い平均適合度を達成しながらも、大幅に高速です。 RTMOは難しいマルチパーソンのシナリオで優れた性能を発揮し、頑健な、コンテキスト感知型の予測のための空間的に正確なヒートマップを生成します。 RTMOは既存のトップダウンおよびワンステージのマルチパーソン姿勢推定手法のパフォーマンスと速度をバランスさせます。
スタンフォードの研究者たちはPLATOを発表しました:知識グラフに拡張された正則化を用いた高次元、低サンプルの機械学習の過適合に取り組むための斬新なAIアプローチ
ナレッジグラフ(KG)は、ノードとエッジとして情報を格納するグラフベースのデータベースです。一方、マルチレイヤーパーセプトロン(MLP)は、機械学習で使用されるニューラルネットワークの一種です。MLPは、複数の層に配置された相互接続されたノードで構成されています。各ノードは前の層からの入力を受け取り、次の層に出力を送信します。 スタンフォード大学の研究者たちは、KGを活用して補助的なドメイン情報を提供するための新しい機械学習モデルであるPLATOを紹介しました。 PLATOは、KG内の類似したノードがMLPの最初の層の重みベクトルを持つことを保証する帰納的なバイアスを導入することで、MLPを正則化します。この方法は、多くの次元を持つ表形式のデータセットを含むタブラーデータがサンプルよりも多い場合に機械学習モデルが助けが必要な課題に対処します。 PLATOは、特徴の数よりもデータサンプルの数が遥かに多い表形式のデータセットの未開拓シナリオに対処し、NODEやタブラートランスフォーマーなどの他の深層タブラーモデル、およびPCAやLASSOなどの従来のアプローチと異なり、正則化のためのKGを導入します。グラフ正則化方法とは異なり、PLATOはKG内の特徴ノードと非特徴ノードを組み合わせています。これにより、KGを事前情報として異なる表形式のデータセットでの予測に対してMLPモデルの重みを推定します。 機械学習モデルはデータ豊富な環境で優れたパフォーマンスを発揮することが多い一方で、特徴の数がサンプルの数を大幅に上回る表形式のデータセットでは支援が必要です。この差異は特に科学データセットにおいて顕著であり、モデルのパフォーマンスが制限されます。既存の表形式の深層学習手法は主に例が特徴よりも多いシナリオに焦点を当てており、特徴がサンプルよりも多いローデータ領域では従来の統計手法が主流です。これを解決するために、MLPを正則化するための補助KGを活用するPLATOは、高次元の特徴と限られたモデルを持つデータセットにおけるディープラーニングを可能にし、優れたパフォーマンスを発揮します。 補助KGを活用することで、PLATOは各入力特徴をKGノードと関連付け、ノードの類似性に基づいてMLPの最初の層の重みベクトルを推定します。この手法は、メッセージパッシングの複数のラウンドを用いて特徴の埋め込みを洗練します。PLATOはKG内の浅いノード埋め込み手法(TransE、DistMult、ComplEx)において一貫したパフォーマンスを示す消失実験を行います。この革新的な手法は、データに乏しい表形式の設定におけるディープラーニングモデルの改善の可能性を提供します。 高次元の特徴と限られたサンプルを持つ表形式のデータに対するPLATOは、6つのデータセット全体で13の最先端ベースラインを最大10.19%上回ります。パフォーマンスの評価は、モデルごとに500の設定でランダムサーチを行い、予測値と実際の値のピアソン相関の平均と標準偏差を報告して行われます。結果は、PLATOの効果を裏付け、データに乏しい状況での堅牢なパフォーマンスを達成するための補助KGの活用を示しています。多様なベースラインに対する比較分析は、PLATOの優位性を明確にし、表形式のデータセットの予測の向上における有効性を立証しています。 まとめると、以下のポイントで研究内容を要約することができます: PLATOは表形式のデータのためのディープラーニングフレームワークです。 各入力特徴は補助KG内のノードに似ています。 PLATOはMLPを制御し、高次元の特徴と限られたサンプルを持つ表形式のデータで堅牢なパフォーマンスを達成します。 このフレームワークは、KGノードの類似性に基づいて重みベクトルを推定し、類似の入力特徴は類似の重みベクトルを共有するという帰納的なバイアスを捉えます。 PLATOは6つのデータセットで13のベースラインを最大10.19%上回ります。 補助KGの使用は、データが乏しい状況でのパフォーマンス向上を示します。
中国のこのAI論文では、UniRepLKNetと呼ばれる画像、音声、時間系列データ解析においてクロスモーダル性能を向上させるための革新的な大規模カーネルConvNetアーキテクチャが紹介されています
CNN(畳み込みニューラルネットワーク)は、近年では画像認識のための人気のある技術となっています。物体検出、分類、セグメンテーションのタスクにおいて非常に成功しています。しかし、これらのネットワークがより複雑になるにつれて、新たな課題が浮上しています。テンセントAI Labと香港中文大学の研究者は、大規模カーネルCNNにおけるアーキテクチャの課題に対応するための4つのガイドラインを提案しました。これらのガイドラインは、大規模カーネルをビジョンのタスク以外の領域、例えば時系列予測や音声認識などに拡張して、画像認識の向上を目指しています。 UniRepLKNetは、非常に大きなカーネルを持つConvNetの有効性を探求し、空間畳み込みだけでなく、ポイントクラウドデータ、時系列予測、音声、ビデオの認識などのドメインにまで拡張します。以前の研究では、異なる大きなカーネルの種を紹介していましたが、UniRepLKNetはそのようなカーネルを持つConvNetのためのアーキテクチャ設計に焦点を当てています。UniRepLKNetは3Dパターン学習、時系列予測、音声認識の分野で専門モデルを上回るパフォーマンスを発揮します。テクニカルモデルよりもわずかに低いビデオ認識の精度を持ちながらも、UniRepLKNetはゼロから訓練された総合的なモデルであり、さまざまなドメインでの柔軟性を提供します。 UniRepLKNetは大規模カーネルを持つConvNet向けのアーキテクチャガイドラインを導入し、過剰な深さを避け、広範なカバレッジを重視しています。ガイドラインはVision Transformers(ViTs)の制限に対処し、効率的な構造に焦点を当て、畳み込み層の再パラメータ化、タスクベースのカーネルサイジング、3×3畳み込み層の組み込みを扱っています。UniRepLKNetは既存の大規模カーネルConvNetと最近のアーキテクチャを上回る、画像認識における性能と効率を示しています。時系列予測や音声認識でも普遍的な知覚能力を示し、ポイントクラウドデータの3Dパターン学習においても、専門のConvNetモデルを超える性能を持ちます。 UniRepLKNetのアーキテクチャは、ImageNetの精度が88.0%、ADE20KのmIoUが55.6%、COCOボックスAPが56.4%といった画像認識タスクにおけるトップクラスのパフォーマンスを達成しています。UniRepLKNetの普遍的な知覚能力は、グローバル気温と風速予測の課題においてMSEとMAEで競合他社を上回ることで示されています。UniRepLKNetはポイントクラウドデータの3Dパターン学習においても専門のConvNetモデルを超える性能を発揮します。このモデルは、セグメンテーションなどの下流タスクでも有望な結果を示し、多様なドメインでの優れたパフォーマンスと効率性を確認しています。 まとめると、研究のまとめは以下の通りです: 研究では、大規模カーネルConvNet向けの4つのアーキテクチャガイドラインを導入しています。 これらのガイドラインは大規模カーネルConvNetの特徴を重視しています。 これらのガイドラインに従って設計されたConvNetモデルであるUniRepLKNetは、画像認識タスクにおいて競合他社を上回る優れたパフォーマンスを発揮します。 UniRepLKNetはカスタマイズなしで時系列予測や音声認識などの領域で普遍的な知覚能力を示します。 UniRepLKNetはポイントクラウドデータの3Dパターン学習においても専門モデルを上回ります。 また、研究は非膨張性の大規模カーネル畳み込み層の性能を向上させるためにDilated Reparam Blockを導入しています。 この研究は貴重なアーキテクチャガイドラインを提供し、UniRepLKNetとその能力を紹介し、Dilated Reparam Blockの概念を示しています。
ティーンエイジャーたちはAIのリテラシーを広げることを推進する
一部のティーンエイジャーは、彼らの学校により広範なAI学習経験を提供するよう要望しています
In Japanese キャプチャを超えて:近代的なボット対策におけるAIの進展の探求
この記事は、従来のCAPTCHAから最先端の身元確認へと進化していくデジタル防御戦略の実践を表しています
2024年に探索するべきトップ12の生成 AI モデル
はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…
このAI論文では、アマゾンの最新の機械学習に関する情報が大規模言語モデルのバグコードについて明らかにされています
プログラミングは複雑であり、エラーのないコードを書くことは時には難しいです。コードの大規模言語モデル(Code-LLMs)はコード補完に役立つために開発されていますが、コードの文脈に潜んでいるバグを見落とすことがあります。この問題に対応するために、ウィスコンシン大学マディソン校とAmazon Web Servicesの研究者が、コード生成中に潜在的なバグを検出するためのLLMsの性能向上についての研究を行いました。 コード-LLMsを活用した自動プログラム修正の研究は、プログラミングのバグの特定と修正の負担を軽減することを目指しています。他のドメインの敵対的な例と同様に、意味を保持したままの小さなコード変換は、コード学習モデルの性能を低下させることがあります。CodeXGLUE、CodeNet、HumanEvalなどの既存のベンチマークは、コード補完とプログラム修復の研究に重要な役割を果たしています。データの利用可能性を高めるために、バグを生成するためのコードミュータントやバグを作成する方法などが開発されています。 統合開発環境における重要な機能であるコード補完は、コードをベースとするTransformerベースの言語モデルの進化とともに進化してきました。しかし、これらのモデルはソフトウェア開発でよく起こるバグの存在を見落とすことが多いです。この研究では、コードの文脈に潜在的なバグが存在するバギーコード補完(bCC)の概念を紹介し、そのようなシナリオでのCode-LLMsの振る舞いを探求しています。バグを含んだデータセットであるバギーHumanEvalとバギーFixEvalを導入し、合成的なバグと現実的なバグの存在下でCode-LLMsの評価を行い、著しい性能低下が明らかになりました。この問題に対処するために、ポストミティゲーション手法が探求されています。 提案されたミティゲーション手法には、バギーフラグメントを削除する「削除して補完」、補完後にバグを修正する「補完して書き直す」、補完前にコード行を書き直してバグを解決する「書き直して補完する」などがあります。合格率によって測定されるパフォーマンスは、補完して書き直すと書き直して補完するが有利です。これらの手法では、RealiTやINCODER-6BのようなCode-LLMsがコードフィクサーとして機能します。 潜在的なバグの存在は、Code-LLMsの生成パフォーマンスを著しく低下させます。1つのバグにつき合格率が50%以上減少します。バグの場所の知識を持つヒューリスティックオラクルは、バギーHumanEvalとバギーFixEvalの間に顕著なパフォーマンスギャップを示し、バグの位置の重要性を強調しています。尤度ベースの手法は、2つのデータセットで異なるパフォーマンスを示し、バグの性質が集約方法の選択に影響を与えることを示しています。バグの存在下でのパフォーマンス改善を提案する削除して補完や書き直して補完などのポストミティゲーション手法もありますが、まだギャップが存在し、潜在的なバグとのコード補完の改善についてのさらなる研究の必要性を示しています。 この研究では、以下の要点でまとめることができます: この研究では、bCCと呼ばれる新しいタスクが紹介されています。 bCCは、潜在的なバグが存在するコードの文脈から機能的な実装を生成します。 この研究は、バギーHumanEvalとバギーFixEvalという2つのデータセットで評価されています。 Code-LLMsのパフォーマンスは著しく低下し、テストケースの合格率が5%以下になります。 削除して補完、書き直して補完などのポストミティゲーション手法が提案されていますが、まだパフォーマンスのギャップが存在します。 この研究は、bCCにおけるCode-LLMsの理解を向上させるものです。 この研究は、潜在的なバグの存在下でコード補完を改善する方法を示唆しています。
「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」
「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティングアシスタントアプリを開発する方法を学びましょう」
「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」
『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフォード大学、オックスフォード大学、キングスカレッジロンドン、欧州委員会を含む組織を顧客に数えており、参加者のネットワークを活用して新製品のテストや、視線追跡などのAIシステムのトレーニングを行っています[…]』
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.