Learn more about Search Results on - Page 6
- You may be interested
- Hugging Face HubでのSentence Transformers
- 「機械学習の未来:新興トレンドと機会」
- SalesForce AIはCodeChainを導入:代表的...
- 「回答付きのトップ50のAIインタビューの...
- 「迅速な最適化スタック」
- 🤗変換器を使用した確率的な時系列予測
- 「世界は誰も知らない60年前のコードに依...
- 「トランスフォーマーは戦略を学ぶことが...
- 中国の研究者がImageBind-LLMを紹介:Imag...
- 成功の鍵を開ける:IBM Watsonがあなたの...
- 「PythonにおけるSklearn、Pandas、および...
- 「Pythonを使ったバックトラックの理解:...
- 「革新的な機械学習モデルにより、脱炭素...
- 「ChatGPT(GPT-4)および他の言語モデル...
- 「データアナリストがよく遭遇するであろ...
1. データサイエンティストになるべきでない理由 2. データサイエンティストの仕事の種類が合わない 3. 高度な技術と数学的なスキルが必要 4. 長時間の作業とプレッシャーに耐える必要がある 5. プログラミングが苦手な人には適していない 6. 単調な作業が多い場合がある 7. ビジネスとの連携が重要な役割を果たす場合もある Note The translation provided assumes that the text is asking for 7 reasons why you
「データサイエンスは本当にあなたにとって適切なキャリア選択ですか?それは状況によりますだからこそ、私たちはデータプロフェッショナルの洞察を含んだ主観的なガイドをまとめました」
機械学習を革新する:たった7行のコードでAutoGluonを使ってKaggleのトップ4%を達成
Slalom _buildで新しいデータエンジニアリングの役割を始めてから、数年前のMLの経験を最新化する必要があることに気付きましたデータエンジニアリング/データの経験を積んでから数年が経ちましたが...
「CMU研究者がDiffusion-TTAを発表:類まれなテスト時間適応のために生成的フィードバックで識別的AIモデルを高める」
拡散モデルは、複雑なデータ分布から高品質なサンプルを生成するために使用されます。識別的な拡散モデルは、教師あり分類や回帰のようなタスクにおいて、与えられた入力データに対してラベルまたは出力を予測することを目指して拡散モデルの原則を活用します。識別的な拡散モデルは、不確実性の扱い方の向上、ノイズに対する強さ、データ内の複雑な依存関係の捕捉などの利点を提供します。 生成モデルは、新しいデータ点の学習データ分布からの偏差を定量化することで、異常値や外れ値を識別することができます。通常、これらの生成モデルと識別モデルは競合する代替手段と考えられています。カーネギーメロン大学の研究者は、生成逆と識別モデルの繰り返し推論の利点と、識別モデルの適応能力を利用する方法で、推論段階でこれらの2つのモデルを結合させました。 チームは、Diffusion-TTA (Diffusion-based Test Time Adaptation) モデルを構築しました。このモデルは、画像の分類器、セグメンタ、および深度予測モデルの方法を使用して、個々の未ラベルの画像に適応させ、その出力を使用して画像拡散モデルの条件付けを変調させ、画像拡散を最大化します。彼らのモデルはエンコーダーデコーダーアーキテクチャに似ています。事前に訓練された識別モデルは、画像を仮説(オブジェクトのカテゴリラベル、セグメンテーションマップ、深度マップなど)にエンコードします。これを事前に訓練された生成モデルの条件付けとして使用して画像を生成します。 Diffusion-TTA は、ImageNet およびその派生データセットを含む既存のベンチマークで、インサイドおよびアウトサイドのインスタンスに対して画像分類器の適応を効果的に行います。彼らは画像再構成損失を使用してモデルを微調整します。適応は、拡散尤度の勾配を識別モデルの重みに逆伝播させることで、テストセットの各インスタンスに対して行われます。彼らは、彼らのモデルがこれまでの最先端のTTA手法を上回り、複数の識別的および生成的な拡散モデルのバリアントに対して効果的であることを示しています。 研究者はさまざまな設計の選択肢に対する除去分析を示し、拡散-TTA が拡散時間ステップ、各ステップごとのサンプル数、およびバッチサイズのようなハイパーパラメータとどのように変化するかを調査しました。また、異なるモデルパラメータの適応効果を学習しました。 研究者は、Diffusion-TTA が一貫して Diffusion Classifier を上回ることを示しています。彼らは、(事前に訓練された)識別モデルの重み初期化により、識別モデルが生成損失に対して過学習しないため、このトリビアルな解に収束しないと推測しています。 総括すると、過去には生成モデルは画像分類器やセグメントのテスト時の適応に使用されてきました。しかし、ジョイント識別タスク損失と自己教師付き画像再構成損失の下で Diffusion-TTA モデルを共同トレーニングさせることで、効率的な結果を得ることができます。
「Pythonで座標からサイトの距離行列を計算する」
現在の記事は、スプリント3が終わったところから旅を続けますここで、スプリント4ではモデリングから少し逸れて、ジオスペーシャル機能を持つクラスを開発しますそれは非常に...
IBMの「Condor」量子コンピュータは1000以上のキュービットを持っています
「IBMは2つの量子コンピュータを発表しました一つはこれまでに作られた中で2番目に大きく、もう一つは同社がこれまでに製造したいかなる量子コンピュータよりもエラーが少ないものです」
『Pythonでのマルチスレッディングとマルチプロセッシングの紹介』
「Pythonを使用して、マルチスレッディングとマルチプロセッシングの環境について学び、それらの実装と制限について理解しましょう」
「Perplexity(パープレキシティ)が2つの新たなオンラインLLMモデルを発表:『pplx-7b-online』と『pplx-70b-online』」
パープレキシティ(Perplexity)は、革新的なAIスタートアップとして、情報検索システムを変革する解決策を発表しました。このローンチでは、革新的なLLM(Large Language Models)の2つ、pplx-7b-onlineとpplx-70b-onlineが公にアクセス可能なAPIを介して導入されました。これらのモデルは、Claude 2などの従来のオフラインLLMとは異なり、ライブインターネットデータを活用してリアルタイムで正確なクエリの応答を実現するため、最新のスポーツスコアなどの最新情報といった即座の情報に対する課題を克服しています。 パープレキシティのpplxオンラインモデルがAIの領域で差別化される要因は、APIを介して提供されるユニークなオファーにあります。Google Bard、ChatGPT、BingChatなどの既存のLLMは、オンラインブラウジングで進歩を遂げていますが、APIを介してこの機能を拡張しているものはありません。パープレキシティは、社内の検索インフラストラクチャにこの機能を帰属し、信頼性のある情報源を優先し、高度なランキングメカニズムを活用してリアルタイムに関連性の高い信頼性のある情報を提示するための幅広い優れたウェブサイトのリポジトリをカバーしています。これらのリアルタイムの「スニペット」はLLMに統合され、最新の情報を容易に反映しています。両モデルは、mistral-7bベースモデルとllama2-70bベースモデルに基づいて構築されています。 特筆すべきことに、Perplexity AIは、最先端のテクノロジーと統合するだけでなく、最適なパフォーマンスを引き出すためにこれらのモデルを細かく調整しています。この注意深いプロセスでは、社内データ請負業者によってキュレートされた多様なトップクラスのトレーニングセットを活用しています。この継続的な改善作業により、モデルは助けになり、事実性と新鮮さの面で優れた性能を発揮します。 これらのモデルの効果を検証するために、Perplexity AIは、助けになり、事実性、最新の情報性などの要素を評価する多様なプロンプトを使用して包括的な評価を実施しました。これらの評価では、オープンAIのgpt-3.5やメタAIのllama2-70bなどの主要なモデルとの比較を行い、全体的なパフォーマンスと特定の基準に焦点を当てました。 これらの評価の結果は印象的です。pplx-7b-onlineおよびpplx-70b-onlineは、鮮度、事実性、総合的な好みの面で、対応する他のモデルを常に上回っています。例えば、鮮度の基準では、pplx-7bとpplx-70bは、gpt-3.5とllama2-70bを上回る1100.6と1099.6の推定Eloスコアを獲得しました。 即座に、開発者はPerplexityのAPIにアクセスして、これらのモデルのユニークな機能を活用したアプリケーションを作成することができます。価格体系は利用料に基づいており、早期テスター向けの特別プランも用意されています。 このパイオニア的なリリースにより、PerplexityはAIによる情報検索システムに革新的な変革をもたらしています。pplx-7b-onlineとpplx-70b-onlineモデルがアクセス可能なAPIを介して導入され、既存のオフラインLLMの制約を解消し、正確かつ最新の事実性のある情報の提供で優れたパフォーマンスを発揮しています。 pplx-apiでの開始はこちら。 Perplexity Labsでオンラインモデルを無料で試す。 この記事は、PerplexityがオンラインLLMモデル2つを発表:「pplx-7b-online」と「pplx-70b-online」記事から取得されました。MarkTechPostから転載されました。
Pythonコードの行数を100行未満で使用した動的プログラミングによる在庫最適化
在庫の最適化は、さまざまなドメインで生じる幅広い問題ですその中心的な問いは次のようなものです:あなたは自転車店のマネージャーだと思います毎日、あなたはお客様と連絡を取る必要があります...
「Meditronを紹介:LLaMA-2に基づいたオープンソースの医学用大規模言語モデル(LLM)のスイート」
大規模言語モデル(LLMs)の最もエキサイティングな応用の1つは、医学分野であり、その使用例には医学研究、カスタマイズされたヘルスプラン、臨床診断などが含まれます。ただし、この分野が安全上の問題であるため、これらのモデルをさまざまな用途でストレステストして安全に使用できることを確認する必要があります。さらに、これらのモデルは、公開されて検証を可能にする必要があります。 そのため、研究者グループは、LLMa-2に基づき、ドメイン適応されたMediTronというLLMのセットを公開しました。モデルには7Bパラメータのバリアントと70Bのバリアントがあります。MediTronは、RLHFまたはインストラクションチューニングを使用して特定の下流タスクに使用できる基礎モデルであり、その使用例には医学試験の質疑応答、一般的な健康に関する問い合わせ、疾患情報の問い合わせ、および差異診断のサポートが含まれます。 MediTronのトレーニングデータセットは非常に包括的で、臨床プラクティスガイドライン、医学論文とその要約、一般的なドメインのプリトレーニングデータで構成されています。メガトロン-LLM分散トレーニングライブラリを使用してトレーニング効率を最適化し、並列化スキームではデータ、パイプライン、テンソル並列化を使用してプロセスを高速化しています。 研究者は、モデルの真実性をベースラインモデルに対して初期評価しました。 彼らはTruthfulQAデータセットをベンチマークとして使用し、7Bモデルに対してワンショット評価を行い、70Bモデルに対してゼロショット評価を行いました。両モデルは他のモデルよりも優れており、MediTron-70Bの平均スコアが54.8のLLaMA-2-70Bに比べて71.2、MediTron-7Bの平均スコアが12.6のLLaMA-2-7Bに比べて28.3でした。 続いて、研究者はMedQA、PubMedQAなどのさまざまなテストベンチマークを使用し、多肢選択問題回答タスクの正確性を計算しました。結果を比較するために、LLMa-7B、LLMa-70B、Mistral-7B-instructなどの異なるLLMも使用しました。結果は、MediTron-7BとMediTron-70Bがほぼすべてのデータセットで他の競合モデルを上回り、その優れた機能を示しています。 このモデルは多数の医学データでトレーニングされ、複数のベンチマークで良いパフォーマンスを発揮しますが、追加のテストなしで医療アプリケーションに展開することは避けるべきです。研究者はまだこのモデルの能力と制約を理解し始めたばかりであり、現時点では医療システムでの使用に関して慎重を要します。 まとめると、MediTronは、幅広い医学データセットでトレーニングされた、ドメイン固有のLLMのセットです。7Bパラメータと70Bの2つのバリアントがあり、両方のバリアントは評価対象の他のモデルよりも優れていました。研究者はまた、このモデルは現時点では追加のトレーニングなしで展開されるべきではないと述べています。医学において、このモデルは興味深い進展であり、さまざまな医療タスクを解決し、医療専門家を支援する可能性を秘めています。
マイクロソフトとジョージア工科大学の研究者が、ヘッドウォーンデバイスを使用した多様な舌ジェスチャー認識技術「TongueTap」を紹介しました
スマートウェアラブルテクノロジーの急速な発展において、スムーズで手を使わず誰もが使えるインタラクションを追求するといくつか画期的な発見がありました。TongueTapは、舌のジェスチャー認識を可能にするために複数のデータストリームを同期させる技術であり、非常に有望です。この方法により、ユーザーは手や目を使わずに静かにインタラクションを行い、通常は口の内側または近くに配置される特別なインターフェースなしで操作することができます。 ジョージア工科大学の研究者は、Microsoft Researchとの共同研究により、TongueTapという舌のジェスチャーインターフェースを開発しました。このインターフェースは、Muse 2とReverb G2 OEの2つの商用ヘッドセットのセンサーを組み合わせて作成されました。両方のヘッドセットにはIMUsと光電プレソモグラフィ(PPG)センサーが含まれています。また、そのうちの1つのヘッドセットには脳波測定(EEG)、視線追跡、および頭部追跡センサーも搭載されています。これらの2つのヘッドセットからのデータは、多様な脳-コンピュータインターフェースに一般的に使用される時刻同期システムであるLab Streaming Layer(LSL)を使用して同期されました。 研究チームは、EEG信号に対してSciPyを使用して128Hzのローパスフィルターを適用し、独立成分分析(ICA)を実施しました。他のセンサーには、それぞれのセンサーごとに主成分分析(PCA)を適用しました。ジェスチャー認識には、Scikit-LearnのSupport Vector Machine(SVM)を使用し、放射基底関数(RBF)カーネルを使用してハイパーパラメータC=100およびgamma=1でバイナリ分類を行い、データウィンドウがジェスチャーを含んでいるかどうかまたはノンジェスチャーであるかを判定しました。 研究者は16人の参加者を対象に舌のジェスチャー認識の評価のために大規模なデータセットを収集しました。研究から最も興味深い結果は、どのセンサーが舌のジェスチャーの分類に最も効果的であったかです。MuseのIMUは単独でも80%の精度を達成し、MuseのIMUを含む多様なPPGセンサーの組み合わせは94%の精度を達成しました。 最も精度が高いセンサーに基づいて、耳の後ろにあるIMUは舌のジェスチャーを検出するための低コストな手法であり、これまでの口内感覚アプローチと組み合わせることができます。舌のジェスチャーを製品に対して実用的にするためには、信頼性のあるユーザー非依存の分類モデルが重要です。より現実的な環境にジェスチャーが応用できるようにするには、複数のセッションや環境間の移動を含むエコロジカルに妥当な研究デザインが必要です。 TongueTapは、スムーズで直感的なウェアラブルデバイスのインタラクションへの大きな進歩です。市販の技術を使用して舌のジェスチャーを識別し分類する能力により、秘密のような正確なヘッドウェアデバイスの制御が可能になる未来が見えます。舌のジェスチャーを制御するための最も有望な応用は、ARインターフェースの制御です。研究者は、ARヘッドセットでの使用や他の視線ベースのインタラクションとの比較を行いながら、さらなる研究によってこの多機能な相互作用を探求する予定です。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.