Learn more about Search Results Thomas - Page 6
- You may be interested
- 「意思決定科学は静かに新しいデータサイ...
- アマゾンの研究者は、深層学習を活用して...
- 高度なPython ドット演算子
- モデルカード
- 「EコマースにおけるLLMSを使用したカスタ...
- 「LLM評価のガイド:設定と重要な指標」
- 「LP-MusicCapsに会ってください:データ...
- 「PandasAIの包括的ガイド」
- AWSの知的ドキュメント処理を生成AIで強化...
- 「チャットモデル対決:GPT-4 vs. GPT-3.5...
- 画像認識とコンピュータビジョン:違いは...
- ChatGPTのようなChatBot Zhinaoは、何を言...
- 「Pythonで時系列ネットワークグラフの可...
- デプロイ可能な機械学習パイプラインの構築
- PyTorchを使った効率的な画像セグメンテー...
どのような要素が対話エージェントを有用にするのか?
ChatGPTの技術:RLHF、IFT、CoT、レッドチーミング、およびその他 この記事は、中国語の簡体字で翻訳されています。 数週間前、ChatGPTが登場し、一連の不明瞭な頭字語(RLHF、SFT、IFT、CoTなど)が公衆の議論を巻き起こしました。これらの不明瞭な頭字語は何であり、なぜそれらが重要なのでしょうか?私たちはこれらのトピックに関する重要な論文を調査し、これらの作品を分類し、達成された成果からの要点をまとめ、まだ示されていないことを共有します。 まず、言語モデルに基づく会話エージェントの現状を見てみましょう。ChatGPTは最初ではありません。実際、OpenAIよりも前に、MetaのBlenderBot、GoogleのLaMDA、DeepMindのSparrow、およびAnthropicのAssistant(このエージェントの完璧な帰属なしでの継続的な開発はClaudeとも呼ばれています)など、多くの組織が言語モデルの対話エージェントを公開しています。一部のグループは、オープンソースのチャットボットを構築する計画を発表し、ロードマップを公開しています(LAIONのOpen Assistant)。他のグループも確実に同様の作業を進めており、まだ発表していないでしょう。 以下の表は、これらのAIチャットボットを公開アクセス、トレーニングデータ、モデルアーキテクチャ、および評価方向の詳細に基づいて比較しています。ChatGPTには文書化された情報がないため、代わりにChatGPTの基礎となったと信じられているOpenAIの指示fine-tunedモデルであるInstructGPTの詳細を共有します。 トレーニングデータ、モデル、およびファインチューニングには多くの違いがあることが観察されますが、共通点もあります。これらのチャットボットの共通の目標は、ユーザーの指示に従うことです。たとえば、ChatGPTに詩を書くように指示することなどです。 予測テキストから指示の従属へ 通常、ベースモデルの言語モデリング目標だけでは、モデルがユーザーの指示に対して有益な方法で従うことを学ぶには十分ではありません。モデル開発者は、指示の細かいチューニング(IFT)を使用して、ベースモデルを、感情、テキスト分類、要約などの古典的なNLPタスクのデモンストレーションによって微調整し、非常に多様なタスクセットにおける指示の書かれた方針を学びます。これらの指示のデモンストレーションは、指示、入力、および出力の3つの主要なコンポーネントで構成されています。入力はオプションです。一部のタスクでは、ChatGPTの例のように指示のみが必要です。入力と出力が存在する場合、インスタンスが形成されます。特定の指示に対して複数の入力と出力が存在する場合もあります。以下に[Wang et al.、’22]からの例を示します。 IFTのデータは通常、人間によって書かれた指示と言語モデルを用いた指示のインスタンスのコレクションからなります。ブートストラップのために、LMは(上記の図のように)いくつかの例を使用してフューショット設定でプロンプトされ、新しい指示、入力、および出力を生成するように指示されます。各ラウンドで、モデルは人間によって選択されたサンプルとモデルによって生成されたサンプルの両方からプロンプトを受け取ります。データセットの作成における人間とモデルの貢献の割合はスペクトラムです。以下の図を参照してください。 一方は完全にモデル生成されたIFTデータセットであり、例えばUnnatural Instructions(Honovich et al.、’22)です。もう一方は手作りの指示の大規模な共同作業であり、Super-natural instructions(Wang et al.、’22)などです。これらの間には、Self-instruct(Wang et al.、’22)のような、高品質のシードデータセットを使用してブートストラップする方法もあります。IFTのデータセットを収集するもう1つの方法は、さまざまなタスク(プロンプトを含む)の既存の高品質なクラウドソーシングNLPデータセットを統一スキーマや多様なテンプレートを使用して指示としてキャストすることです。この研究の一環には、T0(Sanh et al.、’22)、自然言語指示データセット(Mishra et…
⚔️AI vs. AI⚔️は、深層強化学習マルチエージェント競技システムを紹介します
私たちは新しいツールを紹介するのを楽しみにしています: ⚔️ AI vs. AI ⚔️、深層強化学習マルチエージェント競技システム。 このツールはSpacesでホストされており、マルチエージェント競技を作成することができます。以下の3つの要素で構成されています: マッチメイキングアルゴリズムを使用してモデルの戦いをバックグラウンドタスクで実行するスペース。 結果を含むデータセット。 マッチ履歴の結果を取得し、モデルのELOを表示するリーダーボード。 ユーザーが訓練済みモデルをHubにアップロードすると、他のモデルと評価およびランキング付けされます。これにより、マルチエージェント環境で他のエージェントとの評価が可能です。 マルチエージェント競技をホストする有用なツールであるだけでなく、このツールはマルチエージェント環境での堅牢な評価技術でもあると考えています。多くのポリシーと対戦することで、エージェントは幅広い振る舞いに対して評価されます。これにより、ポリシーの品質を良く把握することができます。 最初の競技ホストであるSoccerTwos Challengeでどのように機能するか見てみましょう。 AI vs. AIはどのように機能しますか? AI vs. AIは、Hugging Faceで開発されたオープンソースのツールで、マルチエージェント環境での強化学習モデルの強さをランク付けするためのものです。 アイデアは、モデルを継続的に互いに対戦させ、その結果を使用して他のすべてのモデルと比較してパフォーマンスを評価し、ポリシーの品質を把握するための相対的なスキルの尺度を得ることです。従来のメトリクスを必要とせずに。 エージェントが特定のタスクや環境に提出される数が増えるほど、ランキングはより代表的になります。 競争環境での試合結果に基づいて評価を生成するために、私たちはELOレーティングシステムを基にランキングを作成することにしました。…
大規模なネアデデュープリケーション:BigCodeの背後に
対象読者 大規模な文書レベルの近似除去に興味があり、ハッシュ、グラフ、テキスト処理のいくつかの理解を持つ人々。 動機 モデルにデータを供給する前にデータをきちんと扱うことは重要です。古い格言にあるように、ゴミを入れればゴミが出てきます。データ品質があまり重要ではないという幻想を作り出す見出しをつかんでいるモデル(またはAPIと言うべきか)が増えるにつれて、それがますます難しくなっています。 BigScienceとBigCodeの両方で直面する問題の1つは、ベンチマークの汚染を含む重複です。多くの重複がある場合、モデルはトレーニングデータをそのまま出力する傾向があることが示されています[1](ただし、他のドメインではそれほど明確ではありません[2])。また、重複はモデルをプライバシー攻撃に対しても脆弱にする要因となります[1]。さらに、重複除去の典型的な利点には以下があります: 効率的なトレーニング:トレーニングステップを少なくして、同じかそれ以上のパフォーマンスを達成できます[3][4]。 データ漏洩とベンチマークの汚染を防ぐ:ゼロでない重複は評価を信用できなくし、改善という主張が偽りになる可能性があります。 アクセシビリティ:私たちのほとんどは、何千ギガバイトものテキストを繰り返しダウンロードまたは転送する余裕がありません。固定サイズのデータセットに対して、重複除去は研究、転送、共同作業を容易にします。 BigScienceからBigCodeへ 近似除去のクエストに参加した経緯、結果の進展、そして途中で得た教訓について最初に共有させてください。 すべてはBigScienceがすでに数ヶ月前に始まっていたLinkedIn上の会話から始まりました。Huu Nguyenは、私のGitHubの個人プロジェクトに気付き、BigScienceのための重複除去に取り組むことに興味があるかどうか私に声をかけました。もちろん、私の答えは「はい」となりましたが、データの膨大さから単独でどれだけの努力が必要になるかは全く無知でした。 それは楽しくも挑戦的な経験でした。その大規模なデータの研究経験はほとんどなく、みんながまだ信じていたにもかかわらず、何千ドルものクラウドコンピュート予算を任せられるという意味で挑戦的でした。はい、数回マシンをオフにしたかどうかを確認するために寝床から起きなければならなかったのです。その結果、試行錯誤を通じて仕事を学びましたが、それによってBigScienceがなければ絶対に得られなかった新しい視点が開かれました。 さらに、1年後、私は学んだことをBigCodeに戻して、さらに大きなデータセットで作業をしています。英語向けにトレーニングされたLLMに加えて、重複除去がコードモデルの改善につながることも確認しました[4]。さらに、はるかに小さなデータセットを使用しています。そして今、私は学んだことを、親愛なる読者の皆さんと共有し、重複除去の視点を通じてBigCodeの裏側で何が起こっているかを感じていただければと思います。 興味がある場合、BigScienceで始めた重複除去の比較の最新バージョンをここで紹介します: これはBigCodeのために作成したコードデータセット用のものです。データセット名が利用できない場合はモデル名が使用されます。 MinHash + LSHパラメータ( P , T , K…
ファルコンはHugging Faceのエコシステムに着陸しました
イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…
Deep learning論文の数学をPyTorchで効率的に実装する:SimCLR コントラスティブロス
PyTorch / TensorFlow のコードに深層学習論文の数学を実装することは、深層学習モデルの数学的な理解を深め、高度なプログラミングスキルを向上させます
CVPR 2023におけるGoogle
Googleのプログラムマネージャー、Shaina Mehtaが投稿しました 今週は、バンクーバーで開催される最も重要なコンピュータビジョンとパターン認識の年次会議であるCVPR 2023の始まりを迎えます(追加のバーチャルコンテンツもあります)。Google Researchはコンピュータビジョンの研究のリーダーであり、プラチナスポンサーであり、メインカンファレンスで約90の論文が発表され、40以上のカンファレンスワークショップやチュートリアルに積極的に参加しています。 今年のCVPRに参加する場合は、是非、ブースに立ち寄って、最新のマシンパーセプションの様々な分野に応用するための技術を積極的に探求している研究者とお話ししてください。弊社の研究者は、MediaPipeを使用したオンデバイスのMLアプリケーション、差分プライバシーの戦略、ニューラル輝度場技術など、いくつかの最近の取り組みについても話し、デモを行います。 以下のリストでCVPR 2023で発表される弊社の研究についても詳しくご覧いただけます(Googleの所属は太字で表示されています)。 理事会と組織委員会 シニアエリアチェアには、Cordelia Schmid、Ming-Hsuan Yangが含まれます。 エリアチェアには、Andre Araujo、Anurag Arnab、Rodrigo Benenson、Ayan Chakrabarti、Huiwen Chang、Alireza Fathi、Vittorio Ferrari、Golnaz Ghiasi、Boqing Gong、Yedid Hoshen、Varun Jampani、Lu…
Novo Nordiskは、AIとライフサイエンスの交差点で働くMITのポストドクトラルフェローを支援する予定です
MIT-ノボ・ノルディスク人工知能ポスドクフェローシッププログラムは、5年間で年間最大10名のポスドクをサポートします
Python におけるカテゴリカル変数の扱い方ガイド
データサイエンスまたは機械学習プロジェクトでのカテゴリ変数の扱いは容易な仕事ではありませんこの種の作業には、アプリケーションの分野の深い知識と幅広い理解が必要です...
NeRFを使用して室内空間を再構築する
Marcos Seefelder、ソフトウェアエンジニア、およびDaniel Duckworth、リサーチソフトウェアエンジニア、Google Research 場所を選ぶ際、私たちは次のような疑問を持ちます。このレストランは、デートにふさわしい雰囲気を持っているのでしょうか?屋外にいい席はありますか?試合を見るのに十分なスクリーンがありますか?これらの質問に部分的に答えるために、写真やビデオを使用することがありますが、実際に訪れることができない場合でもそこにいるような感覚には代わりがありません。 インタラクティブでフォトリアルな多次元の没入型体験は、このギャップを埋め、スペースの感触や雰囲気を再現し、ユーザーが必要な情報を自然かつ直感的に見つけることができるようにすることができます。これを支援するために、Google MapsはImmersion Viewを開発しました。この技術は、機械学習(ML)とコンピュータビジョンの進歩を活用して、Street Viewや航空写真など数十億の画像を融合して世界の豊富なデジタルモデルを作成します。さらに、天気、交通、場所の混雑度などの役立つ情報を上に重ねます。Immersive Viewでは、レストラン、カフェ、その他の会場の屋内ビューが提供され、ユーザーが自信を持ってどこに行くかを決めるのに役立ちます。 今日は、Immersion Viewでこれらの屋内ビューを提供するために行われた作業について説明します。私たちは、写真を融合してニューラルネットワーク内で現実的な多次元の再構成を生成するための最先端の手法であるニューラル輝度場(NeRF)に基づいています。私たちは、DSLRカメラを使用してスペースのカスタム写真キャプチャ、画像処理、およびシーン再現を含むNeRFの作成パイプラインについて説明します。私たちは、Alphabetの最近の進歩を活用して、視覚的な忠実度で以前の最先端を上回るか、それに匹敵する方法を設計しました。これらのモデルは、キュレーションされたフライトパスに沿って組み込まれたインタラクティブな360°ビデオとして埋め込まれ、スマートフォンで利用可能になります。 アムステルダムのThe Seafood Barの再構築(Immersive View内)。 写真からNeRFへ 私たちの作業の中核にあるのは、最近開発された3D再構成および新しいビュー合成の方法であるNeRFです。シーンを説明する写真のコレクションがある場合、NeRFはこれらの写真をニューラルフィールドに凝縮し、元のコレクションに存在しない視点から写真をレンダリングするために使用できます。 NeRFは再構成の課題を大部分解決したものの、実世界のデータに基づくユーザー向け製品にはさまざまな課題があります。たとえば、照明の暗いバーから歩道のカフェ、ホテルのレストランまで、再構成品質とユーザー体験は一貫している必要があります。同時に、プライバシーは尊重され、個人を特定する可能性のある情報は削除される必要があります。重要なのは、シーンを一貫してかつ効率的にキャプチャし、必要な写真を撮影するための労力を最小限に抑えたまま、高品質の再構成が確実に得られることです。最後に、すべてのモバイルユーザーが同じ自然な体験を手に入れられるようにすることが重要です。 Immersive View屋内再構築パイプライン。 キャプチャ&前処理 高品質なNeRFを生成するための最初のステップは、シーンを注意深くキャプチャすることです。3Dジオメトリーとカラーを派生させるための複数の異なる方向からの密な写真のコレクションを作成する必要があります。オブジェクトの表面に関する情報が多いほど、モデルはオブジェクトの形状やライトとの相互作用の方法を発見する際により優れたものになります。 さらに、NeRFモデルはカメラやシーンそのものにさらなる仮定を置きます。たとえば、カメラのほとんどのプロパティ(ホワイトバランスや絞りなど)は、キャプチャ全体で固定されていると仮定されます。同様に、シーン自体は時間的に凍結されていると仮定されます。ライティングの変更や動きは避ける必要があります。これは、キャプチャに必要な時間、利用可能な照明、機器の重さ、およびプライバシーなどの実用上の問題とのバランスを取る必要があります。プロの写真家と協力して、DSLRカメラを使用して会場写真を迅速かつ信頼性の高い方法でキャプチャする戦略を開発しました。このアプローチは、現在までのすべてのNeRF再構築に使用されています。…
AIの10年間のレビュー
画像分類からチャットボット療法まで
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.