Learn more about Search Results T5 - Page 6
- You may be interested
- 2024年の予測17:RAG to RichesからBeatle...
- 「スクラッチからのPythonにおける最急降...
- 中国からの新しいAI研究は、機械学習の手...
- テキストから音声へ – 大規模な言語...
- 「RustコードのSIMDアクセラレーションの...
- グローバルデータバロメーター:世界のオ...
- 「PIXART-αに会ってください:画像生成の...
- マイクロソフトリサーチとジョージア工科...
- シミュレーション101:伝導熱伝達
- Pythonを使った感情分析(Sentiment Analy...
- 「PyGraftに会ってください:高度にカスタ...
- ローカル vs グローバル予測 知っておくべ...
- 「LangChain、Google Maps API、およびGra...
- 大規模画像モデルのための最新のCNNカーネル
- 「MLX対MPS対CUDA:ベンチマーク」
「NVIDIA BioNeMoがAWS上での薬剤探索のための生成型AIを可能にする」
主要な製薬会社やテクバイオ企業の研究者や開発者は、Amazon Web Servicesを通じてNVIDIA Claraソフトウェアとサービスを簡単に展開できるようになりました。詳細はこちらをご覧ください。 本日のAWS re:Inventで発表されたこの取り組みにより、AWSクラウドリソースを使用しているヘルスケアおよびライフサイエンスの開発者は、NVIDIAの加速オファリングを柔軟に統合することができるようになります。これにはNVIDIA BioNeMo(創成AIプラットフォーム)も含まれており、AWS上のNVIDIA DGX Cloudに追加され、高性能コンピューティングのためのAWS ParallelClusterクラスタ管理ツールとAmazon SageMakerマシンラーニングサービスを介して現在利用可能です。 北薬やライフサイエンス企業の数千社がAWSを利用しています。彼らは今やBioNeMoにアクセスして、専有データを使用してデジタル生物学の基礎モデルを構築またはカスタマイズし、NVIDIA GPUアクセラレートクラウドサーバーを使用してモデルのトレーニングとデプロイをスケールアップすることが可能です。 Alchemab Therapeutics、Basecamp Research、Character Biosciences、Evozyne、Etcembly、LabGeniusなどのテクバイオイノベーターは、既にBioNeMoを使用して創成AIによる医薬品の探索と開発を行っています。このコラボレーションにより、彼らはバイオモレキュラーデータ上でトレーニングされた創成AIモデルを開発するためにクラウドコンピューティングリソースを迅速にスケールアップするためのより多くの方法を得ることができます。 この発表により、NVIDIAの既存のヘルスケアに特化したオファリングがAWS上で利用可能になります。それには、医療画像処理のためのNVIDIA MONAIおよびジェノミクスの加速のためのNVIDIA Parabricksも含まれています。 AWSでの新機能:NVIDIA BioNeMoが創成AIを推進する BioNeMoは、デジタル生物学のためのドメイン固有のフレームワークであり、事前学習済みの大規模言語モデル(LLM)、データローダー、最適化されたトレーニングレシピを含んでいます。これにより、ターゲットの同定、タンパク質構造の予測、薬剤候補のスクリーニングを加速することで、コンピュータ支援の薬剤探索を推進することができます。 薬剤探索チームは、BioNeMoを使用して専有データを活用し、クラウドベースの高性能コンピューティングクラスター上でモデルを構築または最適化することができます。…
「新時代のAI/MLのためのソフトウェア/ハードウェアアーキテクチャをどのように共同設計するか?」
最新の生成AI技術は、コンピュータビジョン、自然言語処理などで爆発的な成長を遂げ、画期的なモデルアーキテクチャの研究によるブレイクスルーが続々と生まれています
「Pythonを用いた巡回セールスマン問題の実装、解決、および可視化」
この記事は、スプリント2で終了したところから旅を続けますここでは、前の記事で提案した数学モデルを取り上げ、Pyomoを使用してPythonで実装します
複雑なAIモデルの解読:パデュー大学の研究者が、ディープラーニングの予測を位相マップに変換
複雑な予測モデルの高度なパラメータ化の性質により、予測戦略の説明と解釈が困難です。研究者たちは、この問題を解決するために、トポロジックデータ解析(TDA)を利用した新しいアプローチを導入しました。これらのモデルは、機械学習、ニューラルネットワーク、AIモデルを含むさまざまな科学分野で標準的なツールとなっていますが、広範なパラメータ化のために解釈が難しいことがよくあります。 パデュー大学の研究者たちは、これらの複雑なモデルをより理解しやすい形式に変換できるツールの必要性を認識しました。彼らはTDAを活用してリーブネットワークを構築し、予測戦略の解釈を容易にするトポロジックな視点を提供しました。この方法はさまざまな領域に適用され、大規模データセットでもスケーラビリティが実証されました。 提案されたリーブネットワークは、予測ランドスケープを視覚化することができる、トポロジック構造の離散化です。リーブネットワークの各ノードは、似た予測を持つデータポイントのクラスタとして計算された予測空間の局所的な単純化を表します。ノードは共有されたデータポイントに基づいて接続され、予測とトレーニングデータの間の有益な関係を示します。 このアプローチの重要な応用の一つは、トレーニングデータのラベリングエラーの検出です。リーブネットワークは、曖昧な領域や予測の境界を特定するために効果的であり、潜在的なエラーのさらなる調査を導く役割を果たしました。この方法は、画像分類における一般化や、BRCA1遺伝子における病原性変異に関連する予測の理解にも有用性を示しました。 tSNEやUMAPなどの広く使用されている可視化技術との比較を行い、リーブネットワークが予測間の境界やトレーニングデータと予測の関係についてより多くの情報を提供できることが強調されました。 リーブネットワークの構築には、未知のラベルを持つ大量のデータポイント、データポイント間の既知の関係、および各予測値に対する実数値のガイドなどの前提条件があります。研究者たちは、グラフベースのTDA(GTDA)と呼ばれる再帰的な分割と統合手順を使用して、元のデータポイントとグラフからリーブネットを構築しました。この方法は、ImageNetの130万枚の画像を分析することで、スケーラブル性を実証しています。 実用的な応用では、Amazonのレビューに基づいて製品タイプを予測するグラフニューラルネットワークにリーブネットワークフレームワークを適用しました。これにより、製品カテゴリの曖昧さが明らかになり、予測の正確性の限界とラベルの改良の必要性が強調されました。同様の洞察が、Imagenetデータセット上の事前学習済みResNet50モデルにフレームワークを適用することで得られ、画像のビジュアルタクソノミーが明らかにされ、真のラベリングエラーが明らかにされました。 研究者たちはまた、リーブネットワークを使用して、特にBRCA1遺伝子に関連する悪性遺伝子変異に関連する予測を理解するためにリーブネットワークの適用を紹介しました。ネットワークはDNA配列の局所的なコンポーネントとその二次構造へのマッピングをハイライトし、解釈を支援しました。 結論として、リーブネットワークなどのトポロジック検査技術が、複雑な予測モデルを行動可能な人間レベルの洞察に変換する上で重要な役割を果たすと研究者は予想しています。この方法は、ラベリングエラーからタンパク質構造まで、さまざまな問題を識別する能力を示し、予測モデルの早期診断ツールとしての広範な適用性と潜在能力を示唆しています。
「コスト効率の高い高性能 AI 推論用の Amazon EC2 DL2q インスタンスが一般提供開始されました」
Qualcomm AIのA.K Royさんによるゲスト記事ですAmazon Elastic Compute Cloud(Amazon EC2)DL2qインスタンスは、Qualcomm AI 100 Standardアクセラレータによってパワーアップされ、クラウド上で効率的に深層学習(DL)タスクを展開するために使用することができますDLタスクのパフォーマンスや精度を開発し、検証するためにも利用できます
大規模な言語モデルをマスターするための包括的な資源リスト
大規模言語モデル(LLM)は、さまざまなアプリケーションの重要な一部となりましたこの記事では、LLMの世界に飛び込みたいと思う人々のための豊富な情報源のリストを提供しています
「セルフサービスデータ分析はニーズの階層化です」
90年代を振り返ってみると、ビジネスオブジェクトやコグノスなどのセルフサービス型ビジネスインテリジェンス(BI)ツールが最初に導入されたことを思い出しますまったくもって熱心なソフトウェアエンジニアのように、私も...
「コンダ遅すぎ? マンバを試してみて!」
いずれ、データサイエンティストや機械学習エンジニアは、パッケージマネージャーや環境に遭遇するでしょう環境にはプロジェクトコードを実行するために必要なライブラリが含まれています開発者は…
「Amazon Textractの新しいレイアウト機能は、一般的な目的と生成型のAIドキュメント処理タスクに効率をもたらします」
Amazon Textractは、任意のドキュメントや画像から自動的にテキスト、手書き、データを抽出する機械学習(ML)サービスですAnalyzeDocument Layoutは、ドキュメントから段落、タイトル、字幕、ヘッダー、フッターなどのレイアウト要素を自動的に抽出する新機能ですこのレイアウト機能は、Amazon Textractの単語と行の検出を拡張します
Amazon MusicはSageMakerとNVIDIAを使用してMLの訓練および推論のパフォーマンスとコストを最適化しています
Amazon Music のストリーミングのダイナミックな世界では、曲やポッドキャスト、プレイリストの検索ごとに物語、ムード、感情の洪水が待っていますこれらの検索は新たな発見、大切な経験、永続する思い出への入り口となります検索バーは単に曲を見つけるためだけではありません
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.