Learn more about Search Results REC Foundation - Page 6

「メタのCode Llamaコード生成モデルは、Amazon SageMaker JumpStartを介して利用可能になりました」

今日は、Metaが開発したCode Llama foundationモデルが、Amazon SageMaker JumpStartを通じて顧客に提供され、クリックひとつで推論を実行するためにデプロイできることをお知らせすることを喜んでいますCode Llamaは、コードと自然言語のプロンプトの両方からコードとコードに関する自然言語を生成することができる最新の大規模言語モデル(LLM)ですCode[…]

「Amazon SageMaker JumpStartを使用してFalconでHCLS文書要約アプリケーションを作成する」

健康医療と生命科学(HCLS)の顧客は、より多くのデータを活用するために生成AIをツールとして採用していますユースケースには、ドキュメントの要約化が含まれており、読者が文書の要点に焦点を当てるのを支援し、非構造化テキストを標準化された形式に変換して重要な属性を強調することがあります固有のデータ形式と厳格な規制要件がありますので、顧客の要件に対応するために[…]

GenAIにとっての重要なデータファブリックとしてのApache Kafka

ジェンAI、チャットボット、およびミッションクリティカルな展開での大規模言語モデルのリアルタイム機械学習インフラとしてのApache Kafka

「AIガバナンスの12のコア原則」

ベテランのAI開発者であるサラは、道徳的な十字路に立たされた一つのアルゴリズムは効率を最大化する一方で、プライバシーの犠牲が必要となる他方は個人データを保護するが、スピードに欠けるこれらの…

『倫理と社会ニュースレター#5:ハグフェイスがワシントンに行くと、他の2023年夏の考え事』

人工知能(AI)における「倫理」について知っておくべき最も重要なことの一つは、それが「価値観」に関連しているということです。倫理は何が正しくて何が間違っているかを教えてくれるのではなく、透明性、安全性、公正などの価値観の語彙と優先順位を定めるための枠組みを提供します。今年の夏、私たちはAIの価値観についての理解を欧州連合、イギリス、アメリカの立法府に伝え、AIの規制の未来を形作るのに役立ちました。ここで倫理が光を放つのです:法律がまだ整っていないときに前進するための道筋を切り開くのに役立つのです。 Hugging Faceの主要な価値であるオープンさと責任を守るために、私たちはここで私たちが言ったことや行ったことのコレクションを共有しています。これには、私たちのCEOであるクレムが米国議会に対する証言や米国上院AI Insight Forumでの発言、E.U. AI Actに関するアドバイス、NTIAに対するAIの責任に関するコメント、そして私たちのChief Ethics Scientistであるメグの民主党議員団に対するコメントなどが含まれています。これらの議論の多くで共通していたのは、なぜAIのオープンさが有益であるのかという質問でした。私たちはこの質問に対する私たちの回答のコレクションをこちらで共有しています。 Hugging Faceのコア価値である民主化に則り、私たちは多くの時間を公に話すことに費やしてきました。そしてAIの世界で今起こっていることを説明するためにジャーナリストと対話する機会を与えられています。これには以下のものが含まれます: サーシャのAIのエネルギー使用と炭素排出に関するコメント(The Atlantic、The Guardian、2回、New Scientist、The Weather Network、The Wall Street Journal、2回)およびWall Street Journal op-edの一部の執筆;AIの終末論的なリスクに対する考え(Bloomberg、The Times、Futurism、Sky…

「Amazon EUデザインと建設のためにAmazon SageMakerで動作する生成AIソリューション」

アマゾンEUデザイン・コンストラクション(Amazon D&C)チームは、ヨーロッパとMENA地域全体でアマゾン倉庫を設計・建設するエンジニアリングチームですプロジェクトの設計と展開のプロセスには、アマゾンとプロジェクト固有のガイドラインに関するエンジニアリング要件についての情報リクエスト(RFI)の多くの種類が含まれますこれらのリクエストは、基本ラインの取得から簡単なものから始まります [...]

ビジネスにおけるAIパワードのテキストメッセージングの台頭

紹介 近年、人工知能(AI)の統合、特に自然言語処理(NLP)と機械学習(ML)の発展によって、テキストベースのビジネスコミュニケーションの風景が根本的に変わりました。本記事では、AIによるテキストメッセージングの技術的な側面について詳しく探求し、基本的な概念、応用、利点、課題、そしてこの技術の将来について考察します。 学習目標 ビジネスにおけるテキストベースのコミュニケーションを変革する自然言語処理(NLP)や機械学習(ML)の役割を含む、AIによるテキストメッセージングの基本的な概念を理解する。 トークン化、固有表現認識(NER)、品詞タグ付け、教師あり学習、単語の埋め込み、リカレントニューラルネットワーク(RNN)など、AIによるテキストメッセージングシステムの技術的な要素を探求する。 カスタマーサポート、マーケティング、予約スケジュール、フィードバック分析など、さまざまな業界でのAIによるテキストメッセージングの実践的な応用に対する洞察を得る。 この記事はデータサイエンスブログマラソンの一部として公開されました。 AIによるテキストメッセージングの理解 人工知能は、私たちがテキストや対話をする方法を変えています。これらの技術的な要素は、AIによるテキストメッセージングシステムの構築要素であり、効果的なテキストベースの対話を理解、処理、生成するためのものです。会話技術の未来へのダイブとともに、AIによるテキストメッセージングの本質を見つけましょう。 トークン化 トークン化は、テキストをより小さな単位、通常は単語やトークンに分割する基本的なプロセスです。自然言語処理(NLP)やテキストメッセージングの文脈では、トークン化は重要なステップです。なぜなら、トークン化によって、連続していたり、連続性のある人間の言語をコンピュータが処理可能な離散的な単位に変換できるからです。例えば、文「The quick brown fox jumps.」をトークン化すると、[「The」、「quick」、「brown」、「fox」、「jumps」]のような個々のトークンに分割されます。 固有表現認識(NER) NERは、テキスト内の特定のエンティティや要素を識別し分類するための技術です。これらのエンティティには、人名、組織名、日付、場所などが含まれます。AIによるテキストメッセージングでは、NERはメッセージ内の異なる要素の文脈と重要性を理解するのに役立ちます。例えば、「Apple Inc. was founded on April 1, 1976, in…

「ゼロからLLMを構築する方法」

「これは、大規模言語モデル(LLM)を実践的に使用するシリーズの6番目の記事です以前の記事では、プロンプトエンジニアリングとファインチューニングを通じて事前学習済みのLLMを活用する方法について詳しく調査しましたこれらに対して…」

「GANやVAEを超えたNLPにおける拡散モデルの探求」

はじめに 拡散モデルは、特に自然言語処理(NLP)の分野で最近注目されています。データを通じてノイズを拡散させるという概念に基づいて、これらのモデルはさまざまなNLPタスクで優れた能力を示しています。この記事では、拡散モデルについて詳しく掘り下げ、その基本原理を理解し、実際の応用、利点、計算上の考慮事項、多モーダルデータ処理における拡散モデルの関連性、事前学習済み拡散モデルの利用可能性と課題について調べます。また、実世界のシナリオでの効果を示すコードの例も紹介します。 学習目標 確率過程の拡散モデルの理論的基礎とノイズのデータの精緻化における役割を理解する。 拡散モデルのアーキテクチャ、拡散と生成のプロセス、およびそれらがデータの品質を反復的に改善する方法を把握する。 PyTorchなどのディープラーニングフレームワークを使用して拡散モデルを実装する実践的な知識を得る。 この記事は、データサイエンスブログマラソンの一環として公開されました。 拡散モデルの理解 研究者は、拡散モデルを確率過程の理論に根ざし、ノイズのあるデータを反復的に精緻化することで、基礎となるデータ分布を捉えるように設計しています。キーポイントは、入力データのノイズのあるバージョンから始めて、数段階にわたり徐々に改善することです。まるで拡散のように情報が徐々にデータを通じて広がる過程と考えることができます。 このモデルは、データを反復的に変換し、真の基礎となるデータ分布に近づくようにノイズを導入および除去するプロセスと捉えることができます。情報がデータを通じて徐々に広がる拡散のようなプロセスと考えることができます。 拡散モデルでは、通常2つの主要なプロセスがあります: 拡散プロセス:このプロセスでは、ノイズを追加することによる反復的なデータの精緻化が行われます。各ステップで、データにノイズが導入され、ノイズが増えます。その後、モデルはこのノイズを徐々に減少させ、真のデータ分布に近づけることを目指します。 生成プロセス:データが拡散プロセスを経た後に適用される生成プロセスです。このプロセスは、改善された分布に基づいて新たなデータサンプルを生成し、高品質のサンプルを効果的に生成します。 以下の画像は、異なる生成モデルの動作の違いを示しています。 異なる生成モデルの動作:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 理論的基礎 1. 確率過程 拡散モデルは、確率過程の基礎に構築されています。確率過程は、時間や空間の中でランダムな変数の進化を記述する数学的な概念です。それは、システムが確率的な方法で時間とともにどのように変化するかをモデル化します。拡散モデルの場合、このプロセスはデータを反復的に精緻化することに関係しています。 2. ノイズ 拡散モデルの核心にあるのは、ノイズの概念です。ノイズは、データのランダムな変動や不確実性を指します。拡散モデルの文脈では、入力データにノイズを導入して、データのノイズのあるバージョンを作成します。 この文脈でのノイズは、粒子の位置のランダムな変動を意味します。それは、測定の不確実性や拡散プロセス自体の固有のランダム性を表します。ノイズは、分布からサンプリングされるランダム変数としてモデル化することができます。単純な拡散プロセスの場合、それはしばしばガウスノイズとしてモデル化されます。 3.…

「LLM Fine-Tuningの理解:大規模言語モデルを独自の要件に合わせる方法」

「Llama 2のような大規模言語モデル(LLM)の微調整技術の最新の進展を探索してくださいLow-Rank Adaptation(LoRA)やQuantized LoRA(QLoRA)などの技術が、新しい利用におけるモデルの適応を革新している方法を学びましょう最後に、人間のフィードバックからの強化学習による微調整が、LLMをより人間の価値観に近づける方法にどのように影響しているかを見てみましょう」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us