Learn more about Search Results Mistral 7B - Page 6

「ゼロから始めるLoRAの実装」

「LoRA(ローラ)は、既存の言語モデルを微調整するための効率的で軽量な方法を提供する、Low-Rank AdaptationまたはLow-Rank Adaptorsの頭字語ですこれには、BERTのようなマスクされた言語モデルも含まれます...」

「このAIニュースレターは、あなたが必要とするすべてです #77」

今週のAIのニュースは、Google(ジェミニ)とミストラル(8x7B)による新しい大規模言語モデルのリリースが主でしたモデルの発表におけるアプローチは、プレスイベントとデモによるもので、非常に異なっていました...

「LLMアプリを作成するための5つのツール」

「経験豊富なMLエンジニアであろうと、新しいLLMデベロッパーであろうと、これらのツールはあなたの生産性を高め、AIプロジェクトの開発と展開を加速させるのに役立ちます」

「ハグフェース上のトップ10大きな言語モデル」

イントロダクション Hugging Faceは、自然言語処理の愛好家や開発者にとって宝庫となり、さまざまなアプリケーションに簡単に統合できる事前学習済み言語モデルの幅広いコレクションを提供しています。Large Language Models(LLM)の世界で、Hugging Faceは頼りになるプラットフォームとして際立っています。この記事では、Hugging Faceで利用可能なトップ10のLLMモデルを紹介し、言語理解と生成の進化する景色に貢献します。 さあ、始めましょう! Mistral-7B-v0.1 Mistral-7B-v0.1は、70億のパラメータを誇る大規模言語モデル(LLM)です。これは事前学習済みの生成テキストモデルとして設計されており、Llama 2 13Bが検証されたドメインで設定したベンチマークを上回ることで知られています。このモデルは、グループ化されたクエリアテンションやスライディングウィンドウアテンションなどの注意機構に特定の選択を行ったトランスフォーマーアーキテクチャに基づいています。Mistral-7B-v0.1は、Byte-fallback BPEトークナイザーも組み込んでいます。 ユースケースとアプリケーション テキスト生成:Mistral-7B-v0.1は、コンテンツ作成、創造的な文章作成、または自動ストーリーテリングなど、高品質のテキスト生成を必要とするアプリケーションに適しています。 自然言語理解:高度なトランスフォーマーアーキテクチャと注意機構を備えたこのモデルは、感情分析やテキスト分類などの自然言語理解を必要とするタスクに適用することができます。 言語翻訳:生成能力と大規模なパラメータサイズを考慮すると、このモデルはニュアンスのある文脈に即した正確な翻訳が重要な言語翻訳タスクで優れたパフォーマンスを発揮するかもしれません。 研究開発:研究者や開発者は、さまざまな自然言語処理プロジェクトでのさらなる実験や微調整のためにMistral-7B-v0.1をベースモデルとして活用することができます。 このLLMにはこちらでアクセスできます。 Starling-LM-11B-alpha この大規模言語モデル(LLM)は、110億のパラメータを持ち、NurtureAIから生まれました。このモデルは、その基盤としてOpenChat 3.5モデルを利用し、AIのフィードバックからの強化学習(RLAIF)によるfine-tuningを経ています。このアプローチでは、ヒトによってラベル付けされたランキングのデータセットを利用してトレーニングプロセスを誘導します。 ユースケースとアプリケーション Starling-LM-11B-alphaは、マシンとの対話方法を革新する潜在的な大規模言語モデルであり、オープンソースの性質、優れたパフォーマンス、多様な機能を備えており、研究者、開発者、クリエイティブプロフェッショナルにとって貴重なツールです。…

「エキスパートのミックスについて解説」

ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…

AI2とワシントン大学の研究者が、LLMsの表面的な性質を明らかにし、チューニングフリーの新しい方法であるURIALを紹介した

ラージランゲージモデル(LLMs)は、人工知能(AI)やディープラーニングの分野での最近の革新です。GPT、PaLM、LLaMaなどのよく知られたLLMは、コンテンツの生成において非常に高いポテンシャルを示しています。質問応答やテキスト要約から言語翻訳やコード補完まで、これらのモデルは多くのことができます。ChatGPTを含むこれらのモデルは、広範な非監督テキストコーパスでの事前トレーニングを経ています。しかし、最近の研究は、従来のファインチューニングの採用方法が以前に考えられていたほど重要ではない可能性があると示唆しています。 オープンドメインのAIアシスタントとしての基本LLMの改善プロセスであるアライメントチューニングは業界標準と認められています。これには、人間のフィードバックからの強化学習(RLHF)や監視付きファインチューニング(SFT)が含まれます。この標準は、LIMAという研究によって問われ、SFTのためのわずか1,000のサンプルでも意味のあるアライメントパフォーマンスを達成することができると示されました。 LIMAが提案したスーパーフィシャルアライメント仮説では、基本LLMの振る舞いを根本的に変えるのではなく、特定のデータ形式を選択するようにトレーニングすることで、アライメントチューニングが行われる可能性があります。これにより、わずかな例でも高品質なアライメントモデルが監視付きファインチューニングによって生成されることが示されました。 スーパーフィシャルアライメント理論に確かな支持を見つけるための研究が不十分であるため、Allen Institute for Artificial Intelligenceおよびワシントン大学の研究チームは、最近の論文でアライメントチューニングの広く使用されている技術に取り組み、基本LLMを有用なオープンドメインのAIアシスタントにする方法を提案しています。選好チューニングは人間のフィードバックからの強化学習によって実現され、指導学習は監視付きファインチューニングによって実現されています。 チームは、基本LLMとそのアライメントされたバージョン(例:Llama-2およびLlama-2-chat)のトークン分布の変化を調査し、アライメント調整の影響を研究しました。彼らは、基本LLMとそのアライメントされたバージョンが上位ランクされたトークンを共有し、ほとんどのトークン位置でデコーディングにおいてほぼ同じパフォーマンスを発揮することを発見しました。ディスコースマーカーやセーフティディスクレイマーなどのスタイルトークンは、最も分布の変動を経験しています。この研究は、アライメント調整が主にAIアシスタントの言語スタイルを同化することに焦点を当てており、基本LLMがユーザーの問い合わせに応えるために必要な情報を提供しているという仮説の説得力のある証拠を提供しています。 チームはまた、SFTやRLHFなしで基本LLMをどの程度アラインできるかという研究トピックを提示しました。彼らは、URIAL(調整を必要としないLLMとコンテキスト内アライメント)というアライメント技術を提案しました。わずか3つの連続スタイルの例とシステムのプロンプトだけで、URIALは基本LLMとのコンテキスト内学習(ICL)のみを通じて効果的なアラインメントを達成します。 チームは、Mistral-7b-Instruct(SFTで調整されたLLM)やSFT+RLHF(Llama-2-70b-chat)でアラインされたLLMsと同等またはそれ以上のパフォーマンスを提供するURIALを持つ基本LLMの詳細で理解しやすい分析を提供する、just-eval-instructと呼ばれる一連のインスタンスで、チューニングフリーおよびチューニングベースのアライメント戦略のギャップを劇的に縮小することが示されました。 結論として、評価結果は浅いアライメントチューニングを強調し、基本LLMの言語スタイルの導入と既存の知識に委ねられることを示しています。

DL Notes 高度な勾配降下法

以前の記事では、勾配降下法について基本的な概念とその種類の最適化における主な課題を要約しましたしかし、スティーブンスティカスティック勾配法のみを取り上げました...

成功の鍵を開ける:IBM Watsonがあなたのビジネスを革命する方法

「IBM WatsonのAIが、さまざまな業界でビジネスを変革し、データに基づいた意思決定、効率化された業務、充実した顧客体験、カスタマイズされたソリューションを可能にする方法を探求してください Watsonの革新について学び、導入方法や将来の対策に必要な倫理的な考慮事項について貴重な見識を得てください」

ChatGPTの初めての記念日:AIインタラクションの未来を変える

私たちの包括的な記事で、ChatGPTの1年間の旅とオープンソースのLarge Language Models(LLMs)の進化を探求してください技術の進歩、産業への応用、医療への影響、そしてAIの未来についての洞察を深く掘り下げますまた、OpenAIの噂されるQ*モデルについても触れます

「リトリーバル増強生成(RAG)とファインチューニング、どちらを選ぶべきですか?」

最近数ヶ月間、大型言語モデル(LLM)の人気が急上昇しています。自然言語処理、自然言語理解、自然言語生成の強みに基づいて、これらのモデルはほとんどの産業でその能力を発揮しています。生成型人工知能の導入により、これらのモデルは人間のようなテキスト応答を生成するように訓練されるようになりました。 有名なGPTモデルにより、OpenAIはLLMの力を示し、変革的な開発の道を切り拓きました。ファインチューニングやRetrieval Augmented Generation(RAG)などの手法により、より正確で文脈豊かな応答を提供するための問題に対するAIモデルの能力が向上しています。 Retrieval Augmented Generation(RAG) RAGでは、検索ベース型と生成型のモデルが組み合わされます。従来の生成型モデルとは異なり、RAGは基盤となるモデルを変更せずに、対象となる最新のデータを取り込むことで既存の知識の枠組みを超えて活動することができます。 RAGの基本的なアイデアは、特定の組織やドメインのデータに基づいて知識リポジトリを構築することです。リポジトリが定期的に更新されるため、生成型AIは最新の文脈に即したデータにアクセスすることができます。これにより、モデルは組織のニーズに合わせて、より正確かつ複雑な応答をユーザーの入力に対して返すことができます。 大量の動的データは標準の形式に変換され、知識ライブラリに保持されます。その後、データは埋め込まれた言語モデルを使用して数値表現を作成し、ベクトルデータベースに保持されます。RAGにより、AIシステムは言葉を生成するだけでなく、最新かつ関連性の高いデータを用いて生成することが保証されます。 ファインチューニング ファインチューニングは、事前に訓練されたモデルを特定のアクションを実行したり、特定の振る舞いを表示したりするためにカスタマイズする方法です。これは、多数のデータポイントで訓練された既存のモデルを取り上げて、より具体的な目標に適合するように修正することを含みます。自然言語コンテンツを生成するのに長けた事前訓練済みモデルを、ジョークや詩、要約など特定の対象に特化させることができます。ファインチューニングにより、開発者は広範なモデルの知識とスキルを特定の主題やタスクに適用することができます。 ファインチューニングは特にタスク固有のパフォーマンス向上に役立ちます。特定のタスクについて、専門的な情報を適切に選択したデータセットを通じて提供することで、モデルは精度の高い文脈に即した出力を生成する能力を獲得します。ファインチューニングにより、初めから始めるのではなく既存の情報を活用するため、トレーニングに必要な時間と計算リソースも大幅に削減されます。この方法により、モデルは狭いドメインに順応することで、より効果的に焦点を絞った回答を提供することができます。 ファインチューニングとRAGの評価時に考慮すべき要素 RAGは頻繁なモデルの再学習を必要とせずに、定期的に外部の情報源から最新のデータを要求することで、動的データの状況で非常に優れたパフォーマンスを発揮します。一方、ファインチューニングには再現性の保証がないため、信頼性が低くなります。 RAGは他の情報源から関連するデータを取得することで、LLMの機能を向上させます。これはドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスが必要なタスクに適しています。ファインチューニングは頻繁に変わるデータソースに対しては適用できない場合があります。 RAGは小さなモデルの利用を制限します。一方、ファインチューニングは小規模モデルの効果を高めることで、より迅速で費用のかかる推論を可能にします。 RAGは自動的に取得した情報に基づいて言語のスタイルやドメインの専門化を調整することはありません。一方、ファインチューニングは行動や文章スタイル、ドメイン固有の知識の調整により、特定のスタイルや専門領域との深い整合性を提供します。 RAGは一貫性があり、情報をもとに回答を生成します。ファインチューニングは幻覚を抑えることができるかもしれませんが、新しい刺激にさらされると、生成される反応は作り上げられる場合もあります。 RAGは応答生成を分割して明示的なフェーズに分け、データの取得方法に関する情報を提供することで透明性を提供します。一方、ファインチューニングは回答の基本となるロジックの透明性が低くなります。 RAGとファインチューニングのユースケースの違いは何ですか? LLMはテキストのカテゴリ分類、感情分析、テキスト生成などのさまざまなNLPタスクに対してファインチューニングできます。これらのタスクでは、入力に応じてテキストを理解し生成することが主な目的となります。一方、RAGモデルは、ドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスがタスクに必要な場合に優れたパフォーマンスを発揮します。 トレーニングデータに基づくRAGとFine-tuningの違い LLMをFine-tuningする際、彼らは特定の検索手法を使用するわけではありませんが、一般的には目標タスクに一致するラベル付きの例から構成されるタスク固有のトレーニングデータに依存します。一方、RAGモデルは検索と生成の両方のタスクを行うために訓練されます。これには、成功した検索と外部情報の使用を示すデータを生成のための教師付きデータと組み合わせる必要があります。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us