Learn more about Search Results HTML - Page 6
- You may be interested
- 「私たちのLLMモデルを強化するための素晴...
- オープンソースAIゲームジャムを発表しま...
- 「アマゾン対Google対マイクロソフト:AI...
- 「脳に触発された学習アルゴリズムにより...
- 「LangChainのチェーンとGPTモデルを使用...
- 魚の養殖スタートアップ、AIを投入して水...
- メタAI研究者が高度な長文脈LLMsを提案
- 「QLORAとは:効率的なファインチューニン...
- Pythonを使用して地理的な巡回セールスマ...
- AI vs. 予測分析:包括的な分析
- 「ゼロ-ETL、ChatGPT、およびデータエンジ...
- Amazon DocumentDBを使用して、Amazon Sag...
- 「PCAを基礎から構築する」
- 一貫性のあるAIビデオエディターが登場し...
- 「10000 DALL-Eのクレジットでは買えない...
私はスポティファイで3回の大量解雇を乗り越えました、ここで学んだこと
数年間の努力の末、ついに夢の仕事に就くことを想像してみてくださいあなたは世界の頂点に立ち、人生を謳歌し、安定感を感じていますしかし、どこからともなくリストラが襲いかかりますこれは単なる仮説ではありません...
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
「Githubの使い方?ステップバイステップガイド」というテキスト
GitHubに登録するには、以下の6つの手順を守ってください ステップ1: GitHubにサインアップする ウェブサイトを訪問し、「サインアップ」ボタンをクリックします。 ユーザー名、メールアドレス、パスワードなどの情報を入力します。 入力が完了したら、メールを確認して、無料のGitHubアカウントを入手できます。 https://docs.github.com/en/get-started/quickstart/hello-world ステップ2: GitHub上でリポジトリを作成する GitHub上でリポジトリを作成する プロジェクト用のGitHubリポジトリを作成するには、以下の簡単な手順に従ってください: 1. GitHubページの右上隅に移動し、「+」サインをクリックし、「新しいリポジトリ」を選択します。 2. 「リポジトリ名」ボックスにリポジトリ名を入力します。 3. 「説明」ボックスに簡単な説明を追加します。 4. リポジトリが公開されるか非公開になるかを選択します。 5. 「READMEファイルを追加する」オプションをチェックします。 6. 「リポジトリを作成する」ボタンをクリックします。 このリポジトリは、ファイルの整理と保存、他の人との協力、GitHub上でのプロジェクトのショーケースに使用できます。…
アップステージがSolar-10.7Bを発表:一回の会話用に深いアップスケーリングと微調整された精度を持つ先駆的な大規模言語モデルを実現
韓国のAI企業、Upstageの研究者たちは、言語モデルのパフォーマンスを最大化し、パラメータを最小化するという課題に取り組んでいます。モデルのサイズがパフォーマンスと関連している大規模言語モデル(LLM)において、Upstageは10.7兆の重み付けを持つ画期的なモデル、「Solar-10.7B」を導入しました。この革新は、3000億以上のパラメータを持つモデルにおけるモデルのサイズとパフォーマンスの間に生じる相反関係に対処しています。 既存のツールと異なり、UpstageのSolar-10.7Bは、Llama 2アーキテクチャを採用し、Upstage Depth Up-Scalingという新しい技術を使用しています。この方法は、Mistral 7BからアップスケーリングされたレイヤーにMistral 7Bの重み付けを統合し、包括的な事前学習を行います。Solar-10.7Bのコンパクトな設計と優れたパフォーマンスは、Mixtral 8X7Bなどのより大きなモデルすらも上回ります。さまざまな言語のタスクにおいて適応性と堅牢性を実証するための微調整と展示に理想的なモデルです。 さらに、Upstageはシングルターンの対話に特化したファインチューニング版「SOLAR-10.7B-Instruct-v1.0」も提供しています。監視付きファインチューニング(SFT)や直接的な意志最適化(DPO)など、最新のインストラクションのファインチューニング手法を活用し、多様なデータセットをトレーニングに使用しました。このファインチューニングモデルは、驚異的なModel H6スコア74.20を達成し、シングルターンの対話シナリオにおける効果を誇示しています。 Solar-10.7Bのパフォーマンスは、その洗練されたアーキテクチャとトレーニング戦略に根ざしています。Llama 2アーキテクチャを基にしたDepth Up-Scaling技術により、30兆パラメータまでのモデルを凌駕することができます。Mistral 7Bの重み付けをアップスケーリングされたレイヤーに統合することは、その素晴らしいパフォーマンスに貢献し、Mixtral 8X7Bモデルさえも上回ります。評価結果は、Solar-10.7Bの能力を示し、Model H6スコア74.20を記録しており、自然言語処理においてさらなるパフォーマンス最適化の追求を証明しています。 ファインチューニングされたSOLAR-10.7B-Instruct-v1.0は、他のモデルに比べて優れたModel H6スコア74.20でシングルターンの対話シナリオで優れたパフォーマンスを発揮しています。教授ベースのトレーニングのために慎重に選別されたデータセットを活用するこのファインチューニングアプローチは、その適応性とパフォーマンスの向上を一層強調しています。 まとめると、Solar-10.7Bおよびそのファインチューニング版は、大規模言語モデルの領域における重要な進歩を表しています。モデルのサイズとパフォーマンスのバランスを取るという課題に取り組むために、Upstageの研究者たちは戦略的にこれらのモデルを設計し、ファインチューニングして最先端の結果を提供しています。革新的なDepth Up-Scaling技術とMistral 7Bの統合は、適応性と効率性を示しています。研究者たちが言語モデルの開発の限界を押し広げ続ける中で、Solar-10.7Bとそのファインチューニング版は、自然言語処理におけるパフォーマンス最適化の追求の証となっています。 UpstageがSolar-10.7Bを発表:Depth Up-Scalingとファインチューニングされた精度によるシングルターン対話における大規模言語モデルの先駆的な取り組み は、MarkTechPostで最初に公開されました。
「キナラがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革命化」
Kinaraは、エネルギー効率の高いエッジAIのパイオニアであるAra-2プロセッサを発表しました。それは、前任者と比べて8倍の高性能を誇り、デバイス内で大規模な言語モデル(LLMs)とさまざまな生成AIモデルを強力にサポートする能力を備えています。 Kinaraのイノベーションへの執念から生まれたAra-2プロセッサは、プロセッサのラインアップの大きな進歩を表しており、顧客にはパフォーマンスとコストのオプションのスペクトラムが用意されています。チームはこの新しい追加の重要性を強調し、Ara-1とAra-2プロセッサの役割を詳細に説明しました。Ara-1はスマートカメラやエッジAIデバイスが2-8のビデオストリームを処理するのに優れている一方、Ara-2はエッジサーバー、ノートパソコン、高性能カメラに向けた16-32+のビデオストリームを素早く処理する能力を示しました。 チームはさらに、Ara-2の変革的な可能性について詳述し、物体検出、認識、トラッキングの向上におけるその重要な役割を強調しました。このプロセッサは、高度なコンピューティングエンジンを活用し、高解像度の画像を迅速かつ驚くほど高い精度で処理することに優れています。また、Generative AIモデルの処理能力は、Stable Diffusionに対して1枚の画像あたり10秒の速度を達成し、LLaMA-7Bに対しては秒間数十のトークンを生成できることで示されています。 Ara-1の後継として設計されたAra-2チップは、前任者と比べて5〜8倍もの大幅なパフォーマンス向上を約束しています。Kinaraは、Ara-2チップがさまざまなモデルで高コストで高消費電力のグラフィックスプロセッサを置き換える潜在能力を持つと主張しています。特に大規模な言語モデル(LLMs)のニーズに対応しています。 2024年1月のConsumer Electronics Show(CES)で発表される予定のAra-2プロセッサは、複数のバリエーションで提供されます。スタンドアロンチップ、単一チップのUSBおよびM.2モジュール、4つのAra-2チップを並列動作させるPCI Expressアドインボードとして利用できます。Kinaraはリリースを予想しながらも、価格の詳細を開示しておらず、愛好家や消費者がこの技術の驚異を探求することを待ち望んでいます。 まとめると、KinaraのAra-2プロセッサは、切り込んだパフォーマンス、多様性、効率を併せ持つオンデバイスAI処理の新時代を告げる存在です。CESでの近い展示は、エッジAI技術の領域を再定義する可能性のある変革的なツールを暗示して、産業界全体で興味を引き起こしています。 この投稿は、KinaraがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革新の投稿最初に現れました。MarkTechPostより。
「パブリックスピーキングのための5つの最高のAIツール(2023年12月)」
「人工知能の領域において、公の演説にAIツールを応用することは大きな進歩を意味しますこれらのツールは、スピーキングスキルの向上に役立つ実用的なソリューションを提供し、あらゆるレベルのスピーカーが直面する共通の課題に対処しますAI技術を活用することで、これらのツールはスピーチのデリバリー、コンテンツの構成、聴衆の関与に関する貴重な洞察を提供します私たちの探究...」
自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ
この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう
ビジネスにおけるAIの潜在的なリスクの理解と軽減
「この技術を導入する際に遭遇する可能性のあるAIのリスクを学びましょうビジネスオーナーとして、そのようなリスクを避けるためにできることを理解しましょう」
Google AIがMedLMを導入:医療業界の利用事例に特化したファミリー型基盤モデル
Googleの研究者たちは、現在米国で利用可能な医療業界のために調整されたモデルの基礎であるMedLMを紹介しました。これは、Googleの医療と医学における以前の研究であるMed-PaLM 2という医用に調整された大規模言語モデルに基づいて構築されています。MedLMには、別々のエンドポイントを持つ2つのモデルがあり、顧客にさまざまなユースケースに対する柔軟性を提供します。MedLMは、医療の質問応答や要約に優れた性能を発揮します。 最初のモデルは大きなバリアントで、複雑なタスクを処理するために設計されています。一方、二番目のVoAGIサイズのモデルは、微調整やさまざまなアプリケーションへのスケーラビリティに対して柔軟性を提供します。特定の医療と生命科学の要件に基づいて設計されたこれらのモデルは、基本的な機能から洗練されたワークフローまで、医療におけるAIの採用を強化することが期待されています。 Googleは、HCA Healthcare、BenchSci、Accenture、およびDeloitteと協力し、既存のプロジェクトでのパフォーマンスと効率を向上させるためにMedLMを活用しています。HCA Healthcareとの協力により、MedLMはAugmedixのプラットフォームに統合されています。MedLMの技術を活用したこのアプリは、自然言語処理を使用してクリニシャンと患者の会話をドラフト医療ノートに変換し、医療規制に準拠します。この自動化は、パフォーマンスを向上させるだけでなく、時間の節約、バーンアウトの軽減、そして患者ケアの向上にも貢献します。 BenchSciは、前臨床の研究開発の領域で、ASCENDプラットフォーム内でMedLMを活用しています。目標は、前臨床研究のスピードと品質を向上させることにより、薬の発見を加速することです。ASCENDは、AIパワーのエビデンスエンジンであり、MedLMと協力してバイオマーカーの識別と分類を強化し、科学的な発見プロセスを効率化しています。 Accentureとの協力により、Googleは生成型AIを活用して患者のアクセス、体験、および結果を向上させることを目指しています。Google CloudのClaims Acceleration SuiteとMedLMを統合することで、医療機関は新しい洞察を発見し、最終的にはより良い患者結果につながることができます。MedLMの機能をパイロット導入することにより、DeloitteとGoogle Cloudは、プロバイダディレクトリや福利厚生文書からの情報の簡素化を図り、さまざまな基準に基づいて適切なプロバイダを特定する際にコンタクトセンターエージェントをサポートしています。 これらのプロジェクトすべてが示しているように、MedLMの利用は医療および医学産業におけるAIの成長を支援することができます。Google Researchは、今後数ヶ月間にさらなる機能を提供するために、Geminiベースのモデルを組み込んでMedLMスイートを拡大する予定です。業界のリーダー企業との協力努力は、医療における生成型AIの変革的な可能性を示しています。技術が進化するにつれて、Googleは医療現場の開業医、研究者、および医療組織と緊密に連携し、健康・生命科学における画期的な研究を推進するためにAIの安全かつ責任ある使用を確保することに取り組んでいます。 この投稿は、Google AI Introduces MedLM: A Family of Foundation Models Fine-Tuned…
「AIおよび自動化により、2030年に存在しなくなるであろう6つのテクノロジージョブ」
「現在の進行方向に基づいて、バランスを保っているいくつかのテック系の職種をご紹介します」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.