Learn more about Search Results GDPR - Page 6
- You may be interested
- トップのAIメールアシスタント(2023年12月)
- 「はい!OpenTelemetryはシステムのセキュ...
- 「ステーブル拡散」は実際にどのように機...
- 「キャリアは、AWS GlueとAmazon SageMake...
- 「データベース間でSQLの実行順序が異なる...
- 「前方予測デコーディング」:LLM推論を加...
- Light & WonderがAWS上でゲーミングマ...
- 「ウッドペッカーは、言語モデルにおけるA...
- 「Amazon Kendraを使用して、Adobe Experi...
- 「GoとMetalシェーディング言語を通じてAp...
- 事例研究:Hugging Face Infinityとモダン...
- あなたの究極のチャットGPTおよびその他の...
- 「Pythonを使用してPDFファイルからテキス...
- ファイバーオプティックスマートパンツは...
- 「OpenAIがより大きく、より凶暴で、より...
「ファウンデーションモデルの安全で準拠した利用を可能にする生成AIゲートウェイを作成する」
AIや機械学習(ML)の急速に進化する世界では、Foundation Models(FM)は革新を推進し、新たなユースケースを解き放つための大きな可能性を示していますしかし、組織がますますFMのパワーを利用するにつれて、データプライバシーやセキュリティ、追加費用、コンプライアンスに関する懸念が最重要視されるようになりました金融サービスなどの規制とコンプライアンスに特化した業界では、・・・
MailchimpにおけるMLプラットフォーム構築の教訓
この記事はもともと、「MLプラットフォームポッドキャスト」という番組のエピソードでしたこの番組では、ピオトル・ニェジヴィエツとアウリマス・グリチューナスが、MLプラットフォームの専門家たちと一緒に、設計の選択肢、ベストプラクティス、サンプルのツールスタック、そして最高のMLプラットフォームの専門家たちからの実際の学びを話し合っていますこのエピソードでは、ミキコ・バゼリーがMLの構築から学んだことを共有します...
「金融分野における生成型AI:FinGPT、BloombergGPT そしてその先へ」
「Generative AI」とは、入力データに似た新しいデータサンプルを生成できるモデルのことを指します「ChatGPT」の成功により、企業が独自の大規模言語モデルを設計するための機会が多く生まれ、様々な業界で革新的なアイデアが生まれていますデータによって推進される金融セクターは、今や以前よりもデータ集約的です私はデータサイエンティストとして働いています[…]
ビジネスにおけるAIパワードのテキストメッセージングの台頭
紹介 近年、人工知能(AI)の統合、特に自然言語処理(NLP)と機械学習(ML)の発展によって、テキストベースのビジネスコミュニケーションの風景が根本的に変わりました。本記事では、AIによるテキストメッセージングの技術的な側面について詳しく探求し、基本的な概念、応用、利点、課題、そしてこの技術の将来について考察します。 学習目標 ビジネスにおけるテキストベースのコミュニケーションを変革する自然言語処理(NLP)や機械学習(ML)の役割を含む、AIによるテキストメッセージングの基本的な概念を理解する。 トークン化、固有表現認識(NER)、品詞タグ付け、教師あり学習、単語の埋め込み、リカレントニューラルネットワーク(RNN)など、AIによるテキストメッセージングシステムの技術的な要素を探求する。 カスタマーサポート、マーケティング、予約スケジュール、フィードバック分析など、さまざまな業界でのAIによるテキストメッセージングの実践的な応用に対する洞察を得る。 この記事はデータサイエンスブログマラソンの一部として公開されました。 AIによるテキストメッセージングの理解 人工知能は、私たちがテキストや対話をする方法を変えています。これらの技術的な要素は、AIによるテキストメッセージングシステムの構築要素であり、効果的なテキストベースの対話を理解、処理、生成するためのものです。会話技術の未来へのダイブとともに、AIによるテキストメッセージングの本質を見つけましょう。 トークン化 トークン化は、テキストをより小さな単位、通常は単語やトークンに分割する基本的なプロセスです。自然言語処理(NLP)やテキストメッセージングの文脈では、トークン化は重要なステップです。なぜなら、トークン化によって、連続していたり、連続性のある人間の言語をコンピュータが処理可能な離散的な単位に変換できるからです。例えば、文「The quick brown fox jumps.」をトークン化すると、[「The」、「quick」、「brown」、「fox」、「jumps」]のような個々のトークンに分割されます。 固有表現認識(NER) NERは、テキスト内の特定のエンティティや要素を識別し分類するための技術です。これらのエンティティには、人名、組織名、日付、場所などが含まれます。AIによるテキストメッセージングでは、NERはメッセージ内の異なる要素の文脈と重要性を理解するのに役立ちます。例えば、「Apple Inc. was founded on April 1, 1976, in…
「AIコントロールを手にして、サイバーセキュリティシステムに挑戦しましょう」
あなたの組織のデータは、サイバー犯罪者の悪意のある行為に対して免疫を持っていますか?そうでなければ、弱い防御システムの打撃に備えてください!
自己学習のためのデータサイエンスカリキュラム
はじめに データサイエンティストになる予定ですが、どこから始めればいいかわからないですか?心配しないでください、私たちがお手伝いします。この記事では、自己学習のためのデータサイエンスカリキュラム全体と、プロセスを早めるためのリソースとプログラムのリストをカバーします。 このカリキュラムでは、優れたデータサイエンティストになるために必要なツール、トリック、知識の基礎をカバーしています。もし科学と統計について少し知識があるなら、良い位置にいます。これらのことについて初めて知る場合は、まずそれらについて学ぶと役立つかもしれません。そして、既にデータに詳しい場合は、これはクイックな復習になるかもしれません。 覚えておいてください、すべてのプロジェクトでこれらのスキルをすべて使うわけではありません。一部のプロジェクトでは、このリストにない特別なトリックやツールが必要です。しかし、このカリキュラムの内容を十分に理解し、習得すると、ほとんどのデータサイエンスの仕事に対応できるようになります。そして、必要なときに新しいことを学ぶ方法も知っています。 さあ、始めましょう! データサイエンスカリキュラムをなぜフォローするのか? データサイエンスのカリキュラムに従うことは、構造化された効果的な学習には欠かせません。これにより、知識とスキルを習得するための明確なパスが提供され、この分野の広大さに圧倒されることなく学ぶことができます。良いカリキュラムは包括的なカバレッジを保証し、基礎的な概念から高度なテクニックまでを案内します。このステップバイステップのアプローチは、複雑なトピックに深入りする前に、堅固な基盤を築くための基礎となります。 さらに、カリキュラムは実践的な応用を促進します。多くのプログラムにはハンズオンのプロジェクトや演習が含まれており、理論的な知識を実世界のスキルに変換することができます。進捗を体系的に追跡することで、学習の旅においてモチベーションを保ち、集中する助けとなります。 即効的な利点を超えて、カリキュラムに従うことは職業にも役立ちます。データサイエンスの構造化された教育を完了することは、潜在的な雇用主に対してコミットメントと熟練度を示し、仕事の見通しを向上させます。さらに、このアプローチは適応性を育成し、自身のニーズに合わせてペースを調整し、困難なテーマに深入りすることができるようにします。 要するに、データサイエンスのカリキュラムは必須のスキルを身につけるだけでなく、データサイエンスの常に進化する分野で独立して学び続ける能力を養うことも可能です。 自己学習のためのデータサイエンスカリキュラム 以下は、データサイエンスの旅を始める際に探索するための主要な領域の簡略化されたロードマップです: 数学の基礎 多変数微積分:複数の変数の関数、導関数、勾配、ステップ関数、シグモイド関数、コスト関数などを理解する。 線形代数:ベクトル、行列、転置や逆行列などの行列演算、行列式、内積、固有値、固有ベクトルを習得する。 最適化手法:コスト関数、尤度関数、誤差関数などについて学び、勾配降下法(および確率的勾配降下法などの変種)などのアルゴリズムを理解する。 プログラミングの基礎 PythonまたはRを主要な言語として選択する。 Pythonの場合、NumPy、pandas、scikit-learn、TensorFlow、PyTorchなどのライブラリを習得する。 データの基礎 さまざまな形式(CSV、PDF、テキスト)でのデータ操作を学ぶ。 データのクリーニング、補完、スケーリング、インポート、エクスポート、Webスクレイピングのスキルを習得する。 PCAやLDAなどのデータ変換や次元削減の手法を探索する。 確率と統計の基礎…
情報セキュリティ:IoT業界内のAIセキュリティ
この記事では、AIセキュリティについての読者をIoT業界に没入させ、トピックの基盤となるさまざまな種類の「セキュリティ」についての理解を深めることを目指しています
「AIとブロックチェーンの交差点を探る:機会と課題」
今日私たちが見ている世界を変えるAIをブロックチェーンに統合することに関連する機会と課題を探索してください
大規模言語モデル(LLM)の時代におけるイノベーションと安全性・プライバシーのバランス
「あなたの生成AIアプリケーションに安全性とプライバシー機構を実装するためのガイド」
プライバシー保護のためのAIとブロックチェーンの統合
広範な注目とブロックチェーンおよび人工知能技術の潜在的な応用により、両技術の統合によって生じるプライバシー保護技術は、注目に値する重要性を持つようになっていますこれらのプライバシー保護技術は個人のプライバシーだけでなく、データの信頼性とセキュリティも保証しています[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.