Learn more about Search Results Data Science Blogathon - Page 6

「RunPodを使用した生成的LLMsの実行 | サーバーレスプラットフォーム」

イントロダクション サーバーレスは、クラウドコンピューティングにおける画期的な戦略として浮上しています。開発者がアプリケーションの作成に完全に集中できる一方、基盤となるインフラストラクチャはクラウドプロバイダーが管理します。Generative AI Large Language Modelsは、これらの言語モデルが使用する高いGPU VRAMのため、ほとんどの開発者がローカルで実行できないため、Serverless GPUsの成長を後押ししています。RunPodは、リモートGPUサービスで人気が高まっているプラットフォームの1つです。RunPodは、GPUインスタンス、Serverless GPUs、APIエンドポイントなどのさまざまなコンピューティングサービスを提供することで、大規模な言語モデルを使用したアプリケーションの構築およびテストに強力なGPUへのアクセスを提供します。手頃な価格とさまざまなGPUの可能性があるため、リソース集約型の大規模言語モデルの実行には、RunPodでLLMsを学習してください。 学習目標 サーバーレスの概念と、LLMsで作業する開発者にとってなぜ役立つのかを学ぶ 大規模言語モデルを実行するための高いGPU VRAMの必要性を理解する クラウドでGPUインスタンスを作成して言語モデルを実行する方法を学ぶ LLMのサイズに基づいてGPU VRAMを割り当てる方法を学ぶ この記事は、Data Science Blogathonの一環として公開されました。 サーバーレスとは何ですか? サーバーレスは、クラウドプラットフォームのサービス/メソッドであり、開発とアプリケーションの展開に必要なインフラストラクチャをオンデマンドで提供します。サーバーレスでは、アプリケーションの開発に集中し、クラウドプロバイダーに基盤の管理を任せることができます。AWS、Azure、GCPなどの多くのクラウドプラットフォームがこれらのサービスを提供しています。 近年、サーバーレスGPUが人気を集めています。サーバーレスGPUは、メモリが不足している場合にクラウド上でGPUの計算能力を借りることです。大規模な言語モデルの導入以来、これらのサーバーレスプラットフォームは次々と台頭し、他のプラットフォームよりも優れたGPUサービスを提供しています。RunPodはそのようなサービスの1つです。 RunPodについて RunPodは、GPUインスタンス、Serverless…

ローカルマシン上でGenAI LLMsのパワーを解放しましょう!

はじめに GenAI LLMsのリリース以来、私たちはそれらをある方法または別の方法で使用しています。最も一般的な方法は、OpenAIのウェブサイトなどのウェブサイトを介して、OpenAIのGPT3.5 API、GoogleのPaLM API、またはHugging Face、Perplexity.aiなどの他のウェブサイトを介してChatGPTやLarge Language Modelsを使用することです。 これらのアプローチのいずれにおいても、私たちのデータはコンピュータの外部に送信されます。これらのウェブサイトは最高のセキュリティを保証しているとはいえ、何が起こるかわかりませんので、サイバー攻撃のリスクがあるかもしれません。時には、これらのLarge Language Modelsをローカルで実行し、可能であればローカルでチューニングしたい場合もあります。この記事では、Oobaboogaを使用して、つまりLLMsをローカルで設定する方法について説明します。 学習目標 ローカルシステムに大規模な言語モデルを展開することの意義と課題を理解する。 大規模な言語モデルを実行するためのローカル環境を作成する方法を学ぶ。 与えられたCPU、RAM、およびGPU Vramの仕様で実行できるモデルを調べる。 Hugging Faceから任意の大規模な言語モデルをローカルで使用するためのダウンロード方法を学ぶ。 大規模な言語モデルを実行するためにGPUメモリを割り当てる方法を確認する。 この記事はData Science Blogathonの一環として公開されました。 Oobaboogaとは何ですか? OobaboogaはLarge…

「LLMの力を活用する:ゼロショットとフューショットのプロンプティング」

はじめに LLMのパワーはAIコミュニティで新たなブームとなりました。GPT 3.5、GPT 4、BARDなどのさまざまな生成型AIソリューションが異なるユースケースで早期採用されています。これらは質問応答タスク、クリエイティブなテキストの執筆、批判的分析などに使用されています。これらのモデルは、さまざまなコーパス上で次の文予測などのタスクにトレーニングされているため、テキスト生成に優れていると期待されています。 頑健なトランスフォーマーベースのニューラルネットワークにより、モデルは分類、翻訳、予測、エンティティの認識などの言語に基づく機械学習タスクにも適応することができます。したがって、適切な指示を与えることで、データサイエンティストは生成型AIプラットフォームをより実践的で産業的な言語ベースのMLユースケースに活用することが容易になりました。本記事では、プロンプティングを使用した普及した言語ベースのMLタスクに対する生成型LLMの使用方法を示し、ゼロショットとフューショットのプロンプティングの利点と制限を厳密に分析することを目指します。 学習目標 ゼロショットとフューショットのプロンプティングについて学ぶ。 例として機械学習タスクのパフォーマンスを分析する。 フューショットのプロンプティングをファインチューニングなどのより高度な技術と比較評価する。 プロンプティング技術の利点と欠点を理解する。 この記事はData Science Blogathonの一部として公開されました。 プロンプティングとは? まず、LLMを定義しましょう。大規模言語モデル(LLM)とは、数億から数十億のパラメータを持つ、複数のトランスフォーマーとフィードフォワードニューラルネットワークの層で構築されたディープラーニングシステムです。これらはさまざまなソースの大規模なデータセットでトレーニングされ、テキストを理解し生成するために構築されています。言語翻訳、テキスト要約、質問応答、コンテンツ生成などが例です。LLMにはさまざまなタイプがあります:エンコーダのみ(BERT)、エンコーダ+デコーダ(BART、T5)、デコーダのみ(PALM、GPTなど)。デコーダコンポーネントを持つLLMは生成型LLMと呼ばれ、これがほとんどのモダンなLLMの場合です。 生成型LLMに特定のタスクを実行させるには、適切な指示を与えます。LLMは、プロンプトとも呼ばれる指示に基づいてエンドユーザーに応答するように設計されています。ChatGPTなどのLLMと対話したことがある場合、プロンプトを使用したことがあります。プロンプティングは、モデルが望ましい応答を返すための自然言語のクエリで私たちの意図をパッケージングすることです(例:図1、出典:Chat GPT)。 以下のセクションでは、ゼロショットとフューショットの2つの主要なプロンプティング技術を詳しく見ていきます。それぞれの詳細と基本的な例を見ていきましょう。 ゼロショットプロンプティング ゼロショットプロンプティングは、生成型LLMに特有のゼロショット学習の特定のシナリオです。ゼロショットでは、モデルにラベル付きのデータを提供せず、完全に新しい問題に取り組むことを期待します。例えば、適切な指示を提供することにより、新しいタスクに対してChatGPTをゼロショットプロンプティングに使用します。LLMは多くのリソースからコンテンツを理解しているため、未知の問題に適応することができます。いくつかの例を見てみましょう。 以下は、テキストをポジティブ、ニュートラル、ネガティブの感情クラスに分類するための例です。 ツイートの例 ツイートの例は、Twitter US…

「Adversarial Autoencoders オートエンコーダーとGANの間のギャップを埋める」

イントロダクション 機械学習のダイナミックな領域において、2つの強力な技術を組み合わせることで、Adversarial Autoencoders(AAEs)として知られる多目的なモデルが生まれました。オートエンコーダーとGenerative Adversarial Networks(GANs)の特徴をシームレスに組み合わせることで、AAEsはデータ生成、表現学習などの強力なツールとして登場しました。本記事では、AAEsの本質、アーキテクチャ、トレーニングプロセス、応用について探求し、理解を深めるためのPythonコードの実例を提供します。 この記事はData Science Blogathonの一部として公開されました。 オートエンコーダーの理解 AAEsの基盤となるオートエンコーダーは、データの圧縮、次元削減、特徴抽出のために設計されたニューラルネットワーク構造です。このアーキテクチャは、入力データを潜在空間の表現にマッピングするエンコーダーと、この圧縮された表現から元のデータを再構築するデコーダーから構成されています。オートエンコーダーは、画像のノイズ除去、異常検知、潜在空間の可視化など、さまざまな分野で重要な役割を果たしてきました。 オートエンコーダーは、効率的な次元削減を可能にしながら、データから意味のある特徴を抽出することができるニューラルネットワークの基本的なクラスです。エンコーダーは入力データを低次元の潜在表現に圧縮し、デコーダーはこの圧縮された形式から元の入力を再構築します。オートエンコーダーは、画像処理、自然言語処理などの領域を含むさまざまなタスクにおいて、ノイズ除去、異常検知、表現学習などの目的で使用されます。コンパクトで情報量のある表現を学習することにより、オートエンコーダーは複雑なデータセットの潜在的な構造に対する貴重な洞察を提供します。 Adversarial Autoencodersの紹介 Adversarial Autoencoders(AAEs)は、オートエンコーダーとGenerative Adversarial Networks(GANs)を巧みに組み合わせた革新的なモデルです。このハイブリッドモデルでは、エンコーダーが入力データを潜在空間にマッピングし、デコーダーが再構築します。AAEsの特徴的な要素は、生成されたデータサンプルの品質を評価するディスクリミネーターが存在する敵対的なトレーニングの統合です。この生成器とディスクリミネーターの間の敵対的な相互作用により、潜在空間が洗練され、高品質なデータ生成が促進されます。 AAEsは、データ合成、異常検知、教師なし学習などさまざまな応用で、堅牢な潜在表現を提供します。その多様性は、画像合成、テキスト生成などのさまざまな領域で有望なアプローチを提供しています。AAEsは、生成モデルの向上や人工知能の進歩に貢献する可能性があるため、注目を集めています。 オートエンコーダーとGANの潜在空間の探索を組み合わせることにより、Adversarial Autoencodersは生成モデリングに革新的な次元を加えます。オートエンコーダーの潜在空間の探索能力とGANの敵対的なトレーニングメカニズムの利点をバランスさせることで、AAEsはデータ生成の向上と潜在空間でのより意味のある表現を実現します。 AAEのアーキテクチャ AAEsのアーキテクチャの設計図は、エンコーダー、ジェネレーター、ディスクリミネーターの3つの重要な要素を中心に展開されています。エンコーダーは入力データを圧縮された表現に変換し、ジェネレーターはこれらの圧縮された表現から元のデータを再構築します。ディスクリミネーターは実際のデータと生成されたデータサンプルを区別することを目指した敵対的な要素を導入します。 AAEのトレーニング AAEsのトレーニングは、エンコーダー、ジェネレーター、ディスクリミネーターの3つの要素の反復的なダンスです。エンコーダーとジェネレーターは、再構築エラーを最小化するために協力し、生成されたデータが元の入力に似ていることを保証します。同時に、ディスクリミネーターは実際のデータと生成されたデータの区別能力を磨きます。この敵対的な相互作用により、洗練された潜在空間と改善されたデータ生成品質が実現されます。…

プロンプトからテキストを生成するためのモデルの作成

導入 急速に進化するGenerative AIの風景において、新たな時代が訪れました。この変革的なシフトにより、AIアプリケーションに前例のない進歩がもたらされ、その最前線にはChatbotがあります。これらのAIパワードの対話エージェントは、人間のような相互作用をシミュレートし、ビジネスや個人のコミュニケーションを再構築しています。”Gen AI Era”という用語は、先進的なAIが未来を形作る役割を強調しています。”解放された可能性”は、Chatbotがパーソナライズされた体験、効率的な問題解決、創造性を推進する変革期を意味しています。タイトルは、Generation AIによってエンパワーされたChatbotが、新しい対話の時代を切り拓くために、プロンプトからテキストを生成するモデルをゼロから構築する方法を発見することを示唆しています。 本記事では、ChatbotとGen AIの交差点で、プロンプトからテキストを生成することによる深い影響を明らかにしています。Chatbotがコミュニケーションを向上させ、プロセスを効率化し、ユーザーエクスペリエンスを向上させる方法について探求します。この旅は、異なる産業におけるGen AI時代におけるChatbotの潜在能力を解き放ち、その進化、応用、変革力を探求します。最先端のAIイノベーションを通じて、Chatbotがこのダイナミックな人工知能の時代において、対話、作業、つながりを再定義する方法を明らかにします。 学習目標 Gen AI Eraの導入: Generation AI(Gen AI)の概念とその進化する人工知能の風景における重要性を説明して、舞台を設定します。 Chatbotの役割の強調: ChatbotがGen AIの枠組み内で果たす重要な役割を強調し、コミュニケーションと相互作用に与える変革的な影響を示します。 LangChainの洞察の探求: LangChainのブログ投稿「LangChain DemoGPT: Generation AIアプリケーションの新時代を切り拓く」について、ChatbotとGen…

ファッションを先導する生成AI

イントロダクション Generative AIとファッションの融合により、ファッションはクリエイティブなシナジーの旅に乗り出します。このブログでは、Generative AIがファッションに与える劇的な影響が明らかにされ、無限のイノベーション、個別化された体験、持続可能な実践が促進されています。独自のデザインとトレンド予測を通じて視点が広がり、ファッションの本質が変わります。この進歩は倫理的なデザインと持続可能性を受け入れ、環境に優しい手法に新たな命を与えます。Generative AIは、持続可能なファッション革命の推進力として浮上し、革新的な素材、廃棄物削減、サーキュラーファッションを取り入れ、産業の未来を再構築しています。 学習目標 Generative AIがファッション業界に与える変革的な影響についての洞察を得る。 ジェネラティブAIを探求することで、ファッションデザインにおけるバーチャルクチュールとその革命的な潜在能力を理解を深める。 ファッション業界における人間の創造力とAIのイノベーションのシナジーを探求する。共同デザインの変革的な可能性を明らかにする。 この記事はData Science Blogathonの一部として公開されました。 ファッションにおけるGenerative AIの力 Generative AIは、美学とイノベーションが交わる領域で伝統的な制約を超え、ファッション業界を変革しています。Generative AIは計算的な創造性の具現化です。アルゴリズムとニューラルネットワークの複雑なシンフォニーとして機能します。様々な情報源からパターン、スタイル、データを吸収し、個性と自己表現が最も重要な要素となるファッションで、新しく斬新なアウトプットを生み出します。Generative AIは、独自性のある側面を提供します。 この技術により、デザイナーは美しく個人的なアパレルを作り出し、着る人の本質に共鳴するものとなります。さらに、Generative AIとファッション業界全体との相互リンクを探求します。ファッション企業は競争が激化する市場で差別化を図るために努力しています。Generative AIは創造性を活性化させ、ブランドが注目を集め、興味を引くコレクションを作成することを可能にします。この技術は実験の場を提供し、デザイナーが伝統の限界に挑戦し、未踏の領域に進出することを推進します。 Generative AIの実践的な応用…

Visual BERTのマスタリー | 最初のエンカウンターのパワーを解き放て

イントロダクション Googleは、BERTが検索の歴史でも最も大きな進歩の一つであり、より正確に人々が求めている情報を理解するのに役立つと述べています。Visual BERTのマスタリーは特別です。なぜなら、それは文の中の単語を前後の単語を見ることで理解することができるからです。これにより、文の意味をより良く理解することができます。まるで、すべての単語を考慮して文を理解するようなものです。 BERTは、コンピュータがさまざまな状況でテキストの意味を理解するのに役立ちます。例えば、テキストの分類、メッセージの感情の理解、認識された質問への回答、物や人の名前の理解などに役立ちます。Google検索でBERTを使用することにより、言語モデルがどれだけ進化し、コンピュータとのやり取りをより自然で助けになるものにしてくれるかがわかります。 学習目標 BERTの略称(Bidirectional Encoder Representations from Transformers)を理解する。 BERTが大量のテキストデータでトレーニングされる方法を知る。 事前トレーニングの概念と、それがBERTの言語理解の発展にどのように役立つかを理解する。 BERTが文の左右の文脈の両方を考慮することを認識する。 BERTを検索エンジンで使用してユーザーのクエリをより良く理解する。 BERTのトレーニングに使用されるマスクされた言語モデルと次の文予測タスクを探求する。 この記事は、Data Science Blogathonの一環として公開されました。 BERTとは何ですか? BERTはBidirectional Encoder Representations from Transformersの略です。これは、コンピュータが人間の言語を理解し処理するのを助ける特別なコンピュータモデルです。それは私たちのようなテキストを読み、理解することができる知的なツールです。…

画像中のテーブルの行と列をトランスフォーマーを使用して検出する

はじめに 非構造化データを扱ったことがあり、ドキュメント内のテーブルの存在を検出する方法を考えたことはありますか?ドキュメントを迅速に処理するための方法を提供しますか?この記事では、トランスフォーマーを使用して、テーブルの存在だけでなく、テーブルの構造を画像から認識する方法を見ていきます。これは、2つの異なるモデルによって実現されます。1つはドキュメント内のテーブルの検出のためのもので、もう1つはテーブル内の個々の行と列を認識するためのものです。 学習目標 画像上のテーブルの行と列を検出する方法 Table TransformersとDetection Transformer(DETR)の概要 PubTables-1Mデータセットについて Table Transformerでの推論の実行方法 ドキュメント、記事、PDFファイルは、しばしば重要なデータを伝えるテーブルを含む貴重な情報源です。これらのテーブルから情報を効率的に抽出することは、異なるフォーマットや表現の間の課題により複雑になる場合があります。これらのテーブルを手動でコピーまたは再作成するのは時間がかかり、ストレスがかかることがあります。PubTables-1Mデータセットでトレーニングされたテーブルトランスフォーマーは、テーブルの検出、構造の認識、および機能分析の問題に対処します。 この記事はData Science Blogathonの一環として公開されました。 この方法はどのように実現されたのですか? これは、PubTables-1Mという名前の大規模な注釈付きデータセットを使用して、記事などのドキュメントや画像を検出するためのトランスフォーマーモデルであるTable Transformerによって実現されました。このデータセットには約100万のパラメータが含まれており、いくつかの手法を用いて実装されており、モデルに最先端の感触を与えています。効率性は、不完全な注釈、空間的な整列の問題、およびテーブルの構造の一貫性の課題に取り組むことで達成されました。モデルとともに公開された研究論文では、テーブルの構造認識(TSR)と機能分析(FA)のジョイントモデリングにDetection Transformer(DETR)モデルを活用しています。したがって、DETRモデルは、Microsoft Researchが開発したTable Transformerが実行されるバックボーンです。DETRについてもう少し詳しく見てみましょう。 DEtection TRansformer(DETR) 前述のように、DETRはDEtection TRansformerの略であり、エンコーダーデコーダートランスフォーマーを使用したResNetアーキテクチャなどの畳み込みバックボーンから構成されています。これにより、オブジェクト検出のタスクを実行する潜在能力を持っています。DETRは、領域提案、非最大値抑制、アンカー生成などの複雑なモデル(Faster…

「生成AIにおけるニューラル微分方程式の探索」

はじめに 生成AIは大きく進化し、新しい多様なデータを生成するためのさまざまな技術が含まれるようになりました。GANやVAEなどのモデルが注目を集めていますが、あまり探求されていないが非常に興味深い領域として、ニューラル微分方程式(NDEs)の世界があります。本記事では、Generative AIにおけるNDEsの未知の領域に深く掘り下げ、その重要な応用と包括的なPython実装を紹介します。 この記事はData Science Blogathonの一環として公開されました。 ニューラル微分方程式の力 ニューラル微分方程式(NDEs)は微分方程式とニューラルネットワークの原理を組み合わせたものであり、連続かつ滑らかなデータを生成するダイナミックなフレームワークを生み出します。従来の生成モデルは、離散的なサンプルを生成することが多く、その表現力が制限されており、時系列の予測、流体力学、現実的な動きの合成など、連続的なデータが必要なアプリケーションには適していません。NDEsは、連続的な生成プロセスを導入することで、時間とともに滑らかに進化するデータの生成を可能にし、このギャップを埋めます。 ニューラル微分方程式の応用 時系列データ 時系列データは、金融市場から生理学的信号まで、さまざまな領域で頻繁に使用されるデータです。ニューラル微分方程式(NDEs)は、時系列生成の画期的なアプローチとして登場し、時間的な依存関係を理解しモデル化するための独自の視点を提供します。微分方程式の優雅さとニューラルネットワークの柔軟性を組み合わせることで、NDEsは連続的に進化するデータを精巧に合成するAIシステムを可能にします。 時系列生成の文脈では、NDEsは流体の時間的な遷移の調整者となります。彼らは隠れたダイナミクスを捉え、変化するパターンに適応し、将来に予測を外挿します。NDEベースのモデルは、不規則な時間間隔を巧みに扱い、ノイズのある入力を受け入れ、正確な長期予測を容易にします。この驚異的な能力により、予測の景色が再定義され、トレンドの予測、異常の予測、およびさまざまな領域での意思決定の向上が可能になります。 NDEによる時系列生成は、AIによる洞察を提供します。金融アナリストは市場のトレンドを予測するために、医療従事者は患者のモニタリングに、気候科学者は環境変化を予測するためにそれを利用しています。NDEの連続的かつ適応的な性質は、時系列データを生き生きとさせ、AIシステムが時間のリズムと調和して踊ることを可能にします。 物理シミュレーション 物理シミュレーションの領域に進むと、ニューラル微分方程式(NDEs)は、自然現象の複雑な模様を解き明かすことができる才能豊かな存在として現れます。これらのシミュレーションは、科学的な発見、エンジニアリングのイノベーション、およびさまざまな分野での創造的な表現の基盤となっています。微分方程式とニューラルネットワークを融合させることで、NDEsは仮想世界に生命を吹き込み、複雑な物理的プロセスを正確かつ効率的にエミュレーションすることが可能になります。 NDEによる物理シミュレーションは、流体力学から量子力学に至るまで、私たちの宇宙を支配する法則を包括して再現します。従来の方法では、広範な計算リソースと手動のパラメータ調整が必要でしたが、NDEsは明示的な方程式の設定を回避し、動的なシステムに学習し適応することで、シミュレーションのワークフローを加速し、実験を迅速化し、シミュレーションの範囲を拡大します。 航空宇宙、自動車、エンターテイメントなどの産業は、NDEによるシミュレーションを活用して設計を最適化し、仮説を検証し、現実的な仮想環境を作り出しています。エンジニアや研究者は、以前は計算上困難なシナリオを探求し、未知の領域を航海します。要するに、ニューラル微分方程式は、仮想と具体的な世界の間に橋を架け、デジタル領域内で物理学の複雑な交響曲を具現化します。 モーション合成 モーション合成は、アニメーション、ロボティクス、ゲームなどにおける重要な要素であり、ニューラル微分方程式(NDEs)はそこで芸術的かつ実用的な能力を発揮します。従来、自然で流体的なモーションシーケンスの生成は、基礎となるダイナミクスの複雑さにより課題がありました。NDEsはこの領域を再定義し、AIによるキャラクターやエージェントに人間の直感とシームレスに共鳴するような生命のあるモーションを与えます。 NDEsは連続性をモーション合成に与え、ポーズや軌跡をシームレスにリンクし、離散的なアプローチによるジャリングしたトランジションを排除します。彼らはモーションの基礎的なメカニクスを解読し、キャラクターに優雅さ、重み、反応性を注入します。蝶の羽ばたきのシミュレーションからヒューマノイドロボットのダンスの振り付けまで、NDEによるモーション合成は創造性と物理学の調和の取れた融合です。 非破壊検査(NDE)駆動のモーション合成の応用は広範で変革的です。映画やゲームでは、キャラクターが真正さを持って動き、感情的な関与を引き起こします。ロボティクスでは、機械が優雅かつ精密に環境を移動します。リハビリテーション装置はユーザーの動きに適応し、回復を促進します。NDEが指揮することで、モーション合成は単なるアニメーションを超え、作成者と観客の両方に共鳴する動きのシンフォニーを編成するための道となります。 ニューラル微分方程式モデルの実装 NDEの概念を説明するために、PythonとTensorFlowを使用して基本的な連続時間VAEを実装してみましょう。このモデルは連続的な生成プロセスを捉え、微分方程式とニューラルネットワークの統合を示しています。 (注:以下のコードを実行する前に、TensorFlowと関連する依存関係をインストールしてください。)…

「LlaMA 2の始め方 | メタの新しい生成AI」

イントロダクション OpenAIからGPTがリリースされて以来、多くの企業が独自の堅牢な生成型大規模言語モデルを作成するための競争に参入しました。ゼロから生成型AIを作成するには、生成型AIの分野での徹底的な研究と数多くの試行錯誤が必要な場合があります。また、大規模言語モデルの効果は、それらが訓練されるデータに大きく依存するため、高品質なデータセットを注意深く編集する必要があります。さらに、これらのモデルを訓練するためには膨大な計算能力が必要であり、多くの企業がアクセスできない状況です。そのため、現時点では、OpenAIやGoogleを含むわずかな企業しかこれらの大規模言語モデルを作成できません。そして、ついにMetaがLlaMAの導入でこの競争に参加しました。 学習目標 新しいバージョンのLlaMAについて知る モデルのバージョン、パラメータ、モデルのベンチマークを理解する Llama 2ファミリのモデルにアクセスする さまざまなプロンプトでLlaMA 2を試して出力を観察する この記事はData Science Blogathonの一環として公開されました。 Llamaとは何ですか? LlaMA(Large Language Model Meta AI)は、特にMeta AI(元Facebook)が所有する会社であるMeta AIによって開発された基礎となる大規模言語モデルのグループである生成型AIモデルです。Metaは2023年2月にLlamaを発表しました。Metaは、7、13、33、および65兆のパラメータを持つコンテキスト長2kトークンの異なるサイズのLlamaをリリースしました。このモデルは、研究者がAIの分野での知識を進めるのを支援することを目的としています。小型の7Bモデルは、計算能力が低い研究者がこれらのモデルを研究することを可能にします。 LlaMaの導入により、MetaはLLMの領域に参入し、OpenAIのGPTやGoogleのPaLMモデルと競合しています。Metaは、限られた計算リソースで小さなモデルを再トレーニングまたは微調整することで、それぞれの分野で最先端のモデルと同等の結果を達成できると考えています。Meta AIのLlaMaは、LlaMAモデルファミリが完全にオープンソースであり、誰でも無料で使用できるだけでなく、研究者のためにLlaMAの重みを非営利目的で公開しているため、OpenAIやGoogleのLLMとは異なります。 前進 LlaMA…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us