Learn more about Search Results CloudWatch - Page 6

「リトリーバル増強生成」とは何ですか?

最新の生成型AIの進展を理解するには、法廷を想像してみてください。 判事は法律の一般的な理解に基づいて事件を審理し、判決を下します。時には、医療過誤訴訟や労働紛争などの場合には専門の知識が必要となり、判事は裁判事務官を法律図書館に派遣して先例や特定の判例を探し出し、引用する必要があります。 優れた判事のように、大規模な言語モデル(LLM)はさまざまな人間のクエリに応答することができます。しかし、出典を引用した権威ある回答を提供するためには、モデルに調査を行うアシスタントが必要です。 AIの裁判事務官としてのプロセスは、検索補完生成(RAG)と呼ばれています。 名前の由来 2020年の論文の主著者であるパトリック・ルイスは、この肩書きのアクロニムが成長する方法や将来の生成型AIの代表であると信じており、数百の論文や商用サービスにまたがる数々の手法を説明するため、名前があまりにも失礼なものになったことを申し訳なく思っています。 パトリック・ルイス 「私たちは、自分たちの研究がこのように広まるとは知っていたなら、名前にもっと考えを巡らせていたでしょう」とルイスはシンガポールでのインタビューで述べ、彼のアイデアをデータベース開発者の地域会議で共有していました。 「もともとより魅力的な名前を持つつもりでしたが、論文を書く時には誰もより良いアイデアを持っていませんでした」とルイスは言い、現在はAIスタートアップCohereでRAGチームを率いています。 では、検索補完生成とは何ですか? 検索補完生成は、外部ソースから取得した事実によって生成型AIモデルの正確性と信頼性を高める技術です。 言い換えると、LLMの機能にあるギャップを埋める役割を果たします。LLMはネットワークの一部であり、通常はそのパラメータの数で測定されます。LLMのパラメータは、基本的には人間が文を形成する際の一般的なパターンを表します。 この深い理解は、パラメータ化された知識と呼ばれることもあり、LLMが迅速に一般的なプロンプトに応答するのに役立ちます。しかし、現在のトピックやより具体的なトピックにさらに深く入り込みたいユーザーには役立ちません。 内部、外部のリソースの結合 ルイスとその同僚たちは、検索補完生成を開発して、生成型AIサービスを特に最新の技術的詳細が豊富な外部リソースにリンクさせました。 この論文は、かつてのFacebook AI Research(現在はMeta AI)、ロンドン大学、ニューヨーク大学の共著者たちとともに、RAGを「汎用の微調整レシピ」と呼んでいます。なぜなら、ほとんどのLLMがほぼすべての外部リソースに接続するために使用できるからです。 ユーザーの信頼構築 検索補完生成によって、モデルはユーザーが確認できるような引用可能な情報源を得ることができます。これによって信頼性が高まります。 さらに、この技術はユーザーのクエリの曖昧さを解消するのにも役立ちます。そして、モデルが誤った予測を行う可能性を減らし、幻覚と呼ばれる現象を防ぎます。 RAGのもう1つの大きな利点は、実装が比較的簡単であるということです。ルイスと論文の共著者3人によるブログによれば、開発者はたった5行のコードでプロセスを実装することができます。 これにより、追加のデータセットでモデルを再訓練することよりも速く、費用を抑えることができます。また、ユーザーは新しいソースを瞬時に切り替えることができます。…

「Llama2とAmazon SageMakerを使用したLoRAのファインチューニングモデルのモデル管理」

ビッグデータとAIの時代において、企業は競争上の優位性を得るためにこれらの技術を利用する方法を常に探求しています現在、AIの中でも最も注目されている分野の一つが生成AIですそしてその理由は十分にあると言えます生成AIは創造性や可能性の限界を押し上げる強力な解決策を提供してくれます

「大規模な言語モデルを使ったフェイクニュースの検出」を活用する

フェイクニュースは、虚偽で作り話、あるいは意図的に誤った情報を伝えるニュースと定義され、印刷機の登場と同時に現れましたフェイクニュースやディスインフォメーションのオンラインでの急速な拡散は、一般の人々を欺くだけでなく、社会、政治、経済にも深い影響を与える可能性があります

「Amazon Personalizeを使用してリアルタイムで個別のおすすめを実施しましょう」

基本的には、機械学習(ML)技術はデータから学習し、予測を行いますビジネスは、MLによる個別化サービスを活用して顧客体験を向上させるためにデータを利用しますこのアプローチにより、ビジネスはデータを活用して実行可能な洞察を導き、収益とブランドロイヤリティの成長を支援することができますAmazon PersonalizeはMLを用いたデジタルトランスフォーメーションを加速させます...

「ユーザーとの対話により、RAG使用例でのLLM応答を改善する」

最も一般的な生成AIと大規模言語モデル(LLM)の応用の1つは、特定の外部知識コーパスに基づく質問に答えることです情報検索増強生成(RAG)は、外部知識ベースを使用する質問応答システムを構築するための人気のある技術です詳細については、「Amazonと一緒に強力な質問応答ボットを作成する」を参照してください

2024年のトップ10のAI主導のデータ分析企業

2024年にデータ分析の世界を革新する傾向にあるトップのビジネスタイタンを発見してくださいIBM CloudからGoogle Cloudまで、これらのAI駆動のデータ分析企業は人工知能の力を活用し、膨大なデータの貯蔵庫から貴重な洞察を解き放ち、企業に行動可能な知識を提供しています

「NVIDIA Grace Hopperスーパーチップは、グローバルの研究施設、システムメーカー、クラウドプロバイダーで40以上のAIスーパーコンピュータを駆動しています」

数十台の新しいスーパーコンピュータが、NVIDIAの画期的なGH200 Grace Hopper Superchipによって、巨大なスケールのAIとハイパフォーマンスコンピューティングを実現するために、まもなくオンラインに入る予定です。 NVIDIA GH200は、テラバイト単位のデータを実行する複雑なAIおよびHPCアプリケーションの高速化により、科学者や研究者が世界でもっとも困難な問題に取り組めるようにします。 NVIDIAは、SC23スーパーコンピュータショーで、Dell Technologies、Eviden、Hewlett Packard Enterprise(HPE)、Lenovo、QCT、Supermicroなど、さまざまなシステムへの導入を発表しました。 ArmベースのNVIDIA Grace CPUとHopper GPUアーキテクチャを組み合わせ、NVIDIA NVLink-C2Cインターコネクト技術を使用するGH200は、世界中の科学スーパーコンピューティングセンターのエンジンとしても機能します。 これらのGH200を搭載したセンターは、合わせて約200 エクサフロップのAI性能を持ち、科学的なイノベーションを推進します。 HPE CrayスーパーコンピュータはNVIDIA Grace Hopperを統合 HPEは、デンバーのショーでHPE Cray EX2500スーパーコンピュータを提供し、NVIDIA…

Amazon SageMakerの自動モデルチューニングを使用したハイパーパラメータ最適化の高度なテクニックを探求してください

「高性能な機械学習(ML)ソリューションを作るためには、トレーニングパラメータであるハイパーパラメータを探索し最適化することが重要ですハイパーパラメータは、学習率、バッチサイズ、正規化の強度など、特定のモデルやタスクに応じて調整するためのつまみやダイヤルですハイパーパラメータの探索は、系統的に変化させながら行われます...」

「Amazon SageMaker Model Registry、HashiCorp Terraform、GitHub、およびJenkins CI/CDを使用して、マルチ環境設定でのパイプラインの促進を行う」

「機械学習運用(MLOps)プラットフォームを組み立てることは、人工知能(AI)と機械学習(ML)の急速に進化する状況において、データサイエンスの実験と展開のギャップをシームレスに埋めるため、モデルのパフォーマンス、セキュリティ、コンプライアンスの要件を満たす組織にとって必要不可欠です規制とコンプライアンスの要件を満たすためには、[…]」

「初めに、AWS上でMONAI Deployを使用して医療画像AI推論パイプラインを構築しましょう!」

この記事では、MONAI Deploy App SDKで構築されたアプリケーションに再利用可能なMAPコネクタを作成する方法を紹介しますこれにより、クラウドネイティブなDICOMストアから医療画像AIのワークロードへの画像データの取得を統合し、高速化することができますMONAI Deploy SDKは、病院の運用をサポートするために使用することができますさらに、MAP AIアプリケーションをSageMakerでスケールアップするための2つのホスティングオプションもデモンストレーションします

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us