Learn more about Search Results CPU - Page 6
- You may be interested
- 「ChatGPTがクラッシュしましたか? OpenA...
- 「ChatGPTとScraperを使用して、TripAdvis...
- 「Satya Mallickと一緒にコンピュータビジ...
- このAI論文は、’リラックス:エンド...
- イメージの中の数学を解読する:新しいMat...
- 「機械学習支援コンピュータアーキテクチ...
- 🧨 JAX / Flax での安定した拡散!
- 「データと人工知能を利用して、国連の持...
- テストに合格する:NVIDIAがMLPerfベンチ...
- 「AIの教父、ジェフリー・ヒントン氏が人...
- AIに関する最高のコースは、YouTubeのプレ...
- 「巨大な望遠鏡が知能化されたメンテナン...
- 『Gradioを使ったリテンションの理解』
- ロボット犬は、人間よりも侵略的なヒアリ...
- 自分の脳の季節性を活用した、1年間のデー...
「Amazon SageMakerの最新機能を使用することで、モデルのデプロイコストを平均で50%削減します」
組織がモデルを本番環境に展開するにつれて、彼らは常に最新のアクセラレーター(AWS InferentiaやGPUなど)で実行される基盤モデル(FM)の性能を最適化する方法を探し続けていますこれにより、コストを削減し、応答遅延を減らして最高のエンドユーザーエクスペリエンスを提供できるようになりますしかし、一部の基盤モデルは十分に活用されていません...
「Amazon SageMaker のルーティング戦略を使用して、リアルタイムの推論レイテンシを最小限に抑えましょう」
Amazon SageMakerは、リアルタイム推論のための機械学習(ML)モデルの展開を簡単に行えるだけでなく、AWS InferentiaなどのCPUやアクセラレータを搭載したさまざまなMLインスタンスの選択肢も提供しています完全に管理されるサービスとして、モデルの展開をスケーリングし、推論コストを最小限に抑え、運用上の負荷を減らして生産性を向上させることができます
「Amazon SageMakerを使用して、クラシカルなMLおよびLLMsを簡単にパッケージ化してデプロイする方法、パート2:SageMaker Studioでのインタラクティブなユーザーエクスペリエンス」
Amazon SageMakerは、開発者やデータサイエンティストが機械学習(ML)モデルを効率的かつ簡単に構築、トレーニング、展開することができる、完全に管理されたサービスですSageMakerを使用すると、APIコールを通じてモデルを直接本番環境に展開することが簡単になりますモデルはコンテナにパッケージ化され、堅牢でスケーラブルな展開が可能ですSageMakerは以下の機能を提供します[…]
新しい – Code-OSS VS Codeオープンソースに基づくコードエディタが、Amazon SageMaker Studioで利用可能になりました
本日は、Amazon SageMaker Studioにおける新しい統合開発環境(IDE)オプションであるCode Editorのサポートを発表することを嬉しく思いますCode Editorは、Code-OSS、つまりVisual Studio Codeのオープンソース版に基づいており、機械学習(ML)開発者が知っていて愛している人気のあるIDEの馴染みのある環境とツールにアクセスする機能が完全に統合されています
「PDFドキュメントを使用したオブジェクト検出のためのカスタムDetectron2モデルの訓練と展開(パート1:訓練)」
「私は半年ほど、PDF文書を機械読み取り可能にすることで、少なくともセクションを特定するテキストである見出し/タイトルが読み取れるようにするビジネスケースを解決しようと取り組んできました」
「AWSとNVIDIAは新たな戦略的なパートナーシップを発表」
AWS reInventでの注目の発表で、Amazon Web Services(AWS)とNVIDIAは戦略的な協力関係の大規模な拡大を発表し、生成型AIの領域で新たな基準を確立しましたこのパートナーシップは、AWSの堅牢なクラウドインフラストラクチャーとNVIDIAの最先端のAI技術を結びつける、分野における画期的な瞬間を象徴していますAWSは初めてとなりました...
GPUマシンの構築 vs GPUクラウドの利用
この記事では、コスト、パフォーマンス、運用、スケーラビリティなどの要素を分析し、深層学習や人工知能を用いたプロジェクトにおいて、オンプレミスのGPUマシンを構築することと、GPUクラウドサービスを使用することの利点とデメリットを検証しています
「データ管理におけるメタデータの役割」
「メタデータは現代のデータ管理において中心的な役割を果たし、統合、品質、セキュリティに不可欠であり、デジタルトランスフォーメーションの取り組みにおいても重要です」
「プログラムの速度を上げるための5つのコード最適化テクニック」
最初は動作させることに集中し、その後に速さを追求するこれは多くのプロのプログラマが共有している共通の原則です最初は、コードを書く際に、直感的に最もわかりやすいアプローチを選び、保存します…
「NVIDIAは、最大級のAmazon Titan Foundationモデルのトレーニングを支援しています」
大型言語モデルに関するすべての情報は大きいです。巨大なモデルは、数千台のNVIDIA GPU上で大規模なデータセットをトレーニングします。 これにより、生成AIを追求する企業には多くの重大な課題が生じる可能性があります。 ビルディング、カスタマイズ、および実行するためのフレームワークであるNVIDIA NeMoは、これらの課題を克服するのに役立ちます。 Amazon Webサービスの経験豊かな科学者と開発者チームは、Amazon TitanのためにAmazon Titan foundation modelsを作成しています。Amazon Titanは、foundation modelsのための生成AIサービスです。このチームは過去数ヶ月間、NVIDIA NeMoを使用しています。 「NeMoと協力する主な理由の1つは、拡張性があり、高いGPU利用を可能にする最適化が組み込まれていることで、より大規模なクラスタにスケーリングできるため、顧客へのモデルのトレーニングと配信をより迅速に行えるようになるということです」と、AWSのシニアトレーニングエンジニアであるレナード・ローセン氏は述べています。 大きなこと、本当に大きなことを考える NeMoの並列処理技術により、効率的なLLMトレーニングが規模にわたって行えます。 AWSのElastic Fabric Adapterと組み合わせることで、チームはLLMを多数のGPUに分散してトレーニングを加速することができました。 EFAは、AWSの顧客に10,000以上のGPUを直接接続し、オペレーティングシステムとCPUをNVIDIA GPUDirectを使用してバイパスするUltraCluster Networkingインフラストラクチャを提供します。 この組み合わせにより、AWSの科学者たちは卓越したモデル品質を提供することができました。これは、データ並列処理アプローチのみに頼っている場合には規模で実現不可能です。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.