Learn more about Search Results Bloomberg - Page 6
- You may be interested
- 5つの最高のChatGPT SEOプラグイン
- 細菌注入システムは、マウスおよび人間細...
- 「DARPA資金による研究が量子コンピューテ...
- 「Google DeepMindが大規模な言語モデルを...
- 「RecMindと出会ってください:推薦タスク...
- チャートを使ったストーリーテリング
- マイクロソフトの研究者がConfidential Co...
- 「顔認識システムにおけるバイアスの解消 ...
- ChatGPT Vislaプラグインを使用してビデオ...
- 「レストランを選ぶためのベイズの方法」
- 2023年のデータの求人市場を解読する:数...
- ニューラル輝度場の不確実性をどのように...
- データサイエンスのためのSQL:ジョインの...
- 9/10から15/10までの週のトップ...
- 「ガードレールでLLMを保護する」
「Googleのアナリティクスとデータサイエンスの領域を旅する」
紹介 Googleでアナリティクスとデータサイエンスの分野で優れたプロフェッショナルとして活躍するリシャブ・ディングラに会いましょう。リシャブはデータを効果的に活用するための幅広い専門知識と情熱を持っています。彼は先進技術を活用して革新を起こし、貴重な洞察を抽出し、データに基づく意思決定を革新しています。リシャブのGoogleでのキャリアは素晴らしいものであり、アナリティクスとデータサイエンスの分野を変革してきました。彼の功績と貢献を探ってみましょう。それがGoogleの成功を新たな高みに導いたものです。 リシャブから学ぼう! AV:Googleでデータサイエンティストになるまでの道のりを共有していただけますか?今の地位に至るまでにどのようなステップを踏みましたか? リシャブ氏:私は2011年にThorogood AssociatesでBIコンサルタントとしてキャリアをスタートさせ、それ以来データの分野で働いてきました。ですので、SQL、Python、データモデリング、プレゼンテーションスキル、そしてTableauのようなツールなど、最初に必要なステップはこれらの言語やスキルを学ぶことです。そしてその後、数学や理論の学習に深く入り込んでプロジェクトを行う人もいますが、私は実践して理解するという方法が最も効果的だと感じます。私が取ったいくつかの重要なステップは以下です: Analytics Vidhyaのようなプラットフォームでの素晴らしいコースを受講すること 自分の役割でデータサイエンスのスキルを活かせる機会を見つけること 情熱を持ってプロジェクトに取り組むこと ビジネスとの緊密な連携を図り、ビジネスについて学ぶこと 自分の知識を他の人と共有することで、概念をより良く理解すること ネットワーキングを通じて他の人から学ぶこと Google Cloudの技術を習得すること データサイエンティストを目指す人のためのスキル AV:成功したデータサイエンティストとして、データサイエンティストを目指す人にとって最も重要なスキルは何ですか?これらのスキルをどのように開発しましたか? リシャブ氏:成功したデータサイエンティストとして、私は次のスキルがデータサイエンティストを目指す人にとって最も重要だと考えています: 技術的スキル:これには強固な数学、統計学、プログラミングの基礎が含まれます。データサイエンティストはデータを収集、クリーニング、分析、可視化する能力が必要です。また、機械学習やディープラーニングの技術にも精通している必要があります。 問題解決スキル:データサイエンティストはデータを用いて問題を特定し、解決する能力が必要です。彼らは批判的かつ創造的に考え、新しい革新的な解決策を提案する必要があります。 コミュニケーションスキル:データサイエンティストは技術的、非技術的な双方のオーディエンスに対して自分の発見を伝えることができる必要があります。複雑な概念を明確かつ簡潔に説明する能力が求められます。 チームワークスキル:データサイエンティストはしばしば他のデータサイエンティスト、エンジニア、ビジネスプロフェッショナルと共同でプロジェクトに取り組みます。彼らは効果的に協力し、共通の目標に向かって働く必要があります。 私はこれらのスキルをコースを受講したり、個人プロジェクトに取り組んだり、他のデータサイエンティストとネットワーキングを行ったり、彼らの経験から学んだりすることで開発しました。 データサイエンティストを目指す人は避けるべき間違い…
「アメリカ軍がジェネレーティブAIを試す」
アメリカ国防総省は、軍事利用のためのデータ統合とデジタルプラットフォームの開発を目指して、5つの大規模言語モデルのテストを行っています
AIはデータ専門家の役割にどのような影響を与えるのか?
編集者の注:Alanさんは、6月14日から15日に開催されるODSC Europeのスピーカーです彼の講演「AI時代のデータコミュニケーション」をぜひチェックしてください!2023年のAIとLLMsの潜在的な影響について書くことは、トラブルを招くことを意味しています予測は、黙示録的なものから...
「ODSC Europe 2023の写真とハイライト」
ODSC Europe 2023から数週間が経ちましたが、最高のノートで去ることができました週はデータサイエンスのトップトピック、AIのイノベーションに関する魅力的なセッションで満ち、しばらく会っていなかった笑顔の顔もありました以下はODSCのハイライトです...
7月20日に開催される無料の生成AIサミットで見逃せないセッションが発表されました
私たちの初のジェネレーティブAIサミットは、あと2週間で開催されます私たちは、多様な専門家、学者、業界リーダーなどを一堂に集め、この画期的な技術について議論することを心待ちにしていますサミット中に参加できるいくつかのセッションをご覧ください最近の進展について...
機械学習インサイトディレクター【パート3:ファイナンスエディション】
もしMLソリューションをより速く構築したい場合は、hf.co/supportを今すぐご覧ください! 👋 MLインサイトシリーズディレクター、ファイナンスエディションへようこそ!以前のエディションを見逃した場合は、以下で見つけることができます: Machine Learning Insightsディレクター[パート1] Machine Learning Insightsディレクター[パート2:SaaSエディション] ファイナンスの機械学習ディレクターは、レガシーシステムの航海、解釈可能なモデルの展開、および顧客の信頼の維持といった独自の課題に直面しています。また、政府の監督が多く、高度に規制されています。これらの課題には、効果的に導くために深い業界知識と技術的な専門知識が必要です。以下のアメリカン・バンク、カナダ王立銀行、ムーディーズ・アナリティクス、および元ブルームバーグAIの研究科学者からの専門家は、機械学習×ファイナンスセクター内のユニークな知見を提供しています。 ギリシャのナショナルジュニアテニスチャンピオン、100以上の特許を取得した出版者、世界最古のポロクラブ(カルカッタポロクラブ)で定期的にプレーしていたサイクルポロプレーヤーなど、彼らはすべて金融MLの専門家に転身しました。 🚀 トップな金融MLマーベリックからの洞察をご紹介します: 免責事項:すべての意見は個人のものであり、過去または現在の雇用主からのものではありません。 イオアニス・バカギアニス – RBCの機械学習マーケティングサイエンスディレクター バックグラウンド:スケーラブルな、本番用の最先端の機械学習ソリューションを提供する経験豊富な情熱的な機械学習エキスパート。イオアニスはまた、Bak Up Podcastのホストでもあり、AIを通じて世界に影響を与えることを目指しています。 おもしろい事実:イオアニスはギリシャのナショナルジュニアテニスチャンピオンでした。🏆 RBC:世界的な組織は、キャピタルマーケット、銀行および金融において革新的かつ信頼できるパートナーとしてRBCキャピタルマーケットを見ています。 1. 機械学習が金融にどのようなポジティブな影響をもたらしましたか?…
企業がOpenAIのChatGPTに類似した自社の大規模言語モデルを構築する方法
最近の数年間で、言語モデルは大きな注目を集め、自然言語処理、コンテンツ生成、仮想アシスタントなど、さまざまな分野を革新しました最も注目されているのは、
ドライバーレスカーの闇 プライバシーの侵害
自動運転車の出現は、より安全で効率的な移動の未来として長く称賛されてきました。しかし、自動運転技術がサンフランシスコなどの都市で現実のものとなるにつれて、この理想的なビジョンの真実はかなり異なるものとなっています。報告によれば、これらの車両に埋め込まれた常時オンの監視カメラは、個人のプライバシーに重大なリスクをもたらす可能性があります。法執行機関は、これらのカメラで撮影された映像へのアクセスを要求しています。これにより、専門家たちが指摘する監視と憲法上の権利の侵害への懸念が生じています。 約束されたビジョンと気まずい現実 自動車メーカーやテック企業の元々のビジョンでは、自動運転車は知能のあるAI駆動の驚異として描かれ、乗客と一般の安全を向上させるものとされていました。しかし、真実は最初に描かれた理想的なシナリオからは程遠いものとなっています。これらの車両は一般の安全に頻繁に障害物となり、専門家たちが長らく警告してきたプライバシーの懸念を抱えています。 また読む:Didi Neuron:未来の無人タクシー 法執行機関による映像の要求:驚くべき事実 Bloombergの最新の報告によれば、Googleの子会社であるWaymoは、自動運転車業界の重要なプレイヤーです。彼らの自律走行中に撮影された映像について、法執行機関からの要求にさらされています。この事実は、自動運転車の約束された未来からの心配な逸脱を示しており、自動車産業における監視技術の使用についての疑問を提起しています。 ディストピアの可能性:監視とプライバシーの専門家が声を上げる プライバシーや監視に関する懸念が高まる中、この開発の影響について専門家たちは注目を集めています。反監視活動家であるアルバート・フォックス・カーン氏は、監視技術監視プロジェクトのディレクターであり、自動車の監視、カメラ映像の継続的な記録などは車両を警察の道具に変える可能性があり、自動車会社が技術を投資し、社会を独裁主義に向かわせないようにする必要性を強調しています。 自動運転技術のグローバルな拡大:データの収集と取り扱い 自動運転技術がカリフォルニアを超えてテキサスやアリゾナなどの都市に広がり、さらには世界的な場所に到達するにつれて、企業がユーザーデータをどのように収集、保存、取り扱うかを理解することが重要になってきます。自動運転システムの拡大は、データプライバシーや法執行機関によるユーザー情報の誤用の可能性について重要な問題を提起しています。 令状と召喚状のジレンマ テック企業によるユーザーデータの収集は、必然的に法的な注目を集めます。情報時代では、ユーザーデータの要求は令状や召喚状を通じて避けられないものとなっています。この問題は、欧州連合が最近自律走行車に対する法的枠組みを確立し、製造業者がデータを収集し、当局に提供することを可能にする可能性があるため、アメリカ合衆国を超えて広がっています。この規定の完全な影響はまだ見えていません。 個人の安全のコスト:プライバシー対監視 WaymoやCruiseなどの企業は、安全な自律型車の構築に対する公約を一般に保証していますが、個人の安全はしばしば後退します。プライバシーの専門家は、監視技術やデータ収集システムが法執行機関の要求に対して脆弱であり、憲法上のプライバシー権を侵害し、弱者のコミュニティに不釣り合いな影響を与えると強調しています。 スポットライトの中のカメラ:恐ろしい経験 カメラの存在は自動運転システムの機能に不可欠です。外部カメラは車両が道路を進むのを支援し、内部カメラは顧客サポートを提供するとされています。しかし、テストドライブ中に一部の乗客が顔を隠して旅行をする光景から、常時監視に対する不快感が明らかになっています。 法執行機関の関心:Waymoと捜査令状 最近の報告では、法執行機関が自動運転車のカメラで撮影された映像の潜在的な価値を認識していることが示されています。Bloombergの調査によれば、Waymoはサンフランシスコでの自律型車のビデオ録画に関して少なくとも9つの捜査令状の対象となっています。ただし、通常ギャグオーダーが伴うことがあるこのような要求の真の範囲は不明です。 企業の対応:プライバシーに向けて努力 Waymoは、適用される法律と法的手続きに準拠しているかどうかを確認するために、各法執行機関からの要求を審査していると主張しています。データの共有を最小限に抑え、過度に広範な要求には反対しています。同様に、Cruiseもプライバシーの重要性を強調し、法的手続きまたは個人の安全が危険にさらされている緊急の状況にのみ、データを提供しています。 私たちの意見 自動運転車革命が勢いを増す中、個人のプライバシーへの侵害が重要な懸念となっています。監視カメラの使用やユーザーデータの収集は、安全性、監視、および憲法上の権利のバランスについて重大な問題を提起します。自動車メーカーやテクノロジー企業は、プライバシー保護を優先すべきです。また、自動運転の未来の約束が個人の自由の犠牲とならないようにも注意する必要があります。監視、データプライバシー、および自動運転車におけるAI技術の責任ある使用についての議論は、今後数年間の交通の未来を形作るでしょう。 詳しくはこちら:AIが自動車産業をどのように変えているのか?
Googleはカナダに「リンク税」を支払わないと伝え、ニュースリンクを検索から削除すると発表しました
カナダはテック企業にニュース機関への支払いを求めており、同様の法案がアメリカでも審議中です
北京大学の研究者たちは、ChatLawというオープンソースの法律用の大規模言語モデルを紹介しましたこのモデルには、統合された外部知識ベースが搭載されています
人工知能の成長と発展により、大規模な言語モデルが広く利用可能になりました。ChatGPT、GPT4、LLaMA、Falcon、Vicuna、ChatGLMなどのモデルは、さまざまな伝統的なタスクで優れたパフォーマンスを発揮し、法律業界にとっても多くの機会を開いています。ただし、信頼性のある最新かつ高品質なデータを収集することが、大規模な言語モデルの構築には不可欠です。したがって、効果的かつ効率的なオープンソースの法律言語モデルの作成が重要になっています。 人工知能による大規模モデルの開発は、医療、教育、金融など、いくつかの産業に影響を与えています。BloombergGPT、FinGPT、Huatuo、ChatMedなどのモデルは、難解な問題の解決や洞察に有用で効果的であることが証明されています。一方で、法律の領域では、その固有の関連性と正確さの必要性から、徹底的な調査と独自の法的モデルの作成が求められます。法律は、コミュニティの形成、人間関係の規制、そして正義を確保する上で重要です。法律実務家は、賢明な判断を下し、法律を理解し、法的助言を提供するために正確で最新の情報に頼る必要があります。 法的用語の微妙なニュアンス、複雑な解釈、法律の動的な性質は、特殊な問題を引き起こし、専門的な解決策を必要とします。最先端のGPT4などのモデルでも、法的な困難に関しては頻繁に幻覚現象や驚くべき結果が生じることがあります。多くの人々は、関連するドメインの専門知識でモデルを改善することが良い結果をもたらすと考えています。しかし、早期の法的LLM(LawGPT)にはまだ多くの幻覚と不正確な結果が存在するため、これは事実ではありません。当初は中国の法的LLMの需要があることが理解されました。しかし、13億以上のパラメータを持つ中国のモデルは、商業的に利用可能な時点では存在しませんでした。MOSSなどのソースからのトレーニングデータを組み合わせ、中国語の語彙を増やすことで、経済的に実現可能なモデルであるOpenLLAMAの基盤が改善されました。これにより、北京大学の研究者は、中国語の基本モデルを構築し、それに法律特有のデータを追加してChatLawという法的モデルをトレーニングすることができました。 以下は、論文の主な貢献です: 1. 幻覚を減らすための成功した方法:モデルのトレーニング手順を改善し、推論時に「相談」「参照」「自己提案」「応答」という4つのモジュールを組み込むことにより、幻覚を減らす方法を提案しています。参照モジュールを介して垂直モデルと知識ベースを統合することで、幻覚がより少なくなり、ドメイン固有の知識がモデルに組み込まれ、信頼性のあるデータが知識ベースから使用されます。 2. ユーザーの日常言語から法的特徴語を抽出するモデルがトレーニングされました。これはLLMに基づいています。法的な意味を持つ用語を認識するこのモデルの助けを借りて、ユーザーの入力内の法的状況を迅速かつ効果的に特定し、分析することができます。 3. BERTを使用して、ユーザーの普通の言語と930,000件の関連する裁判文書のデータセットとの類似度を測定するモデルがトレーニングされました。これにより、類似した法的文脈を持つ文章を迅速に検索し、追加の研究や引用が可能になります。 4. 中国語の法的試験評価データセットの開発:中国語を話す人々の法的専門知識を評価するためのデータセットを作成しました。また、さまざまなモデルが法的な多肢選択問題でどれだけ優れたパフォーマンスを発揮するかを判断するためのELOアリーナスコアリングシステムも作成しました。 また、一つの汎用的な法的LLMは、この領域で一部のタスクに対してのみうまく機能する可能性があります。そのため、彼らは複数の状況に対応するために、多肢選択問題、キーワード抽出、質問応答などのさまざまなモデルを開発しました。HuggingGPT技術を使用して、大規模なLLMをコントローラーとして使用し、これらのモデルの選択と展開を管理しました。ユーザーの要求に基づいて、このコントローラーモデルは動的に特定のモデルを選択してアクティブにし、タスクに最適なモデルを使用することを保証します。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.