Learn more about Search Results Amazon Simple Storage Service - Page 6

「Amazon EUデザインと建設のためにAmazon SageMakerで動作する生成AIソリューション」

アマゾンEUデザイン・コンストラクション(Amazon D&C)チームは、ヨーロッパとMENA地域全体でアマゾン倉庫を設計・建設するエンジニアリングチームですプロジェクトの設計と展開のプロセスには、アマゾンとプロジェクト固有のガイドラインに関するエンジニアリング要件についての情報リクエスト(RFI)の多くの種類が含まれますこれらのリクエストは、基本ラインの取得から簡単なものから始まります [...]

Amazon SageMakerを使用して、ML推論アプリケーションをゼロから構築し、展開する

機械学習(ML)が主流化し、広く採用されるにつれて、MLを活用した推論アプリケーションは複雑なビジネス問題を解決するためにますます一般的になっていますこれらの複雑なビジネス問題の解決には、複数のMLモデルとステップを使用することがしばしば必要ですこの記事では、カスタムコンテナを使用してMLアプリケーションを構築・ホストする方法をご紹介します

「Amazon SageMakerを使用して、マルチクラウド環境でMLモデルをトレーニングおよびデプロイする」

この投稿では、多クラウド環境でAWSの最も広範で深いAI / ML機能の1つを活用するための多くのオプションの1つを示しますAWSでMLモデルを構築しトレーニングし、別のプラットフォームでモデルを展開する方法を示しますAmazon SageMakerを使用してモデルをトレーニングし、モデルアーティファクトをAmazon Simple Storage Service(Amazon S3)に保存し、モデルをAzureで展開して実行します

「Amazon SageMaker Feature Store Feature Processorを使用して、MLの洞察を解き放つ」

Amazon SageMaker Feature Storeは、機械学習(ML)のための特徴量エンジニアリングを自動化するためのエンドツーエンドのソリューションを提供します多くのMLユースケースでは、ログファイル、センサーの読み取り、トランザクションレコードなどの生データを、モデルトレーニングに最適化された意味のある特徴に変換する必要があります特徴量の品質は、高精度なMLモデルを確保するために重要です[...]

「VirtuSwapがAmazon SageMaker StudioのカスタムコンテナとAWS GPUインスタンスを使用して、Pandasベースの取引シミュレーションを加速する方法」

「この投稿は、VirtuSwapのディマ・ザドロジニーとフアド・ババエフとの共同執筆ですVirtuSwapは、ブロックチェーン上の資産の非中央集権型取引のための革新的なテクノロジーを開発しているスタートアップ企業ですVirtuSwapのテクノロジーは、直接のペアが存在しない資産のより効率的な取引を提供します直接のペアの不在により、コストのかかる間接的な取引が生じます...」

「Amazon SageMakerを使用して、Rayベースの機械学習ワークフローをオーケストレーションする」

機械学習(ML)は、お客様がより困難な問題を解決しようとするにつれて、ますます複雑になっていますこの複雑さはしばしば、複数のマシンを使用して単一のモデルをトレーニングする必要性を引き起こしますこれにより、複数のノード間でタスクを並列化することが可能になり、トレーニング時間の短縮、スケーラビリティの向上、[…] などがもたらされます

「Amazon Comprehendのカスタム分類を使用して分類パイプラインを構築する(パートI)」

このマルチシリーズのブログ投稿の最初のパートでは、スケーラブルなトレーニングパイプラインの作成方法と、Comprehendカスタム分類モデルのためのトレーニングデータの準備方法について学びます数回のクリックでAWSアカウントにデプロイできるカスタム分類トレーニングパイプラインを紹介します

「Amazon QuickSightでワードクラウドとしてAmazon Comprehendの分析結果を可視化する」

自由形式のテキスト文書のリポジトリで洞察を探すことは、藁の中の針を探すようなものです従来のアプローチでは、単語のカウントや他の基本的な分析を使用して文書を解析することがありますが、Amazon AIと機械学習(ML)ツールの力を活用することで、より深い内容の理解を得ることができます[…]

「Hugging Faceを使用してAmazon SageMakerでのメール分類により、クライアントの成功管理を加速する」

この記事では、SageMakerがScalableのデータサイエンスチームが効率的にデータサイエンスプロジェクトのライフサイクルを管理するのをどのようにサポートしているか、具体的にはメール分類プロジェクトについて共有しますライフサイクルは、SageMaker Studioによるデータ分析と探索の初期フェーズで始まり、SageMakerトレーニング、推論、およびHugging Face DLCを使用したモデルの実験と展開に移行し、他のAWSサービスと統合されたSageMakerパイプラインによるトレーニングパイプラインで完了します

「Amazon SageMakerは、個々のユーザーのためにAmazon SageMaker Studioのセットアップを簡素化します」

今日は、Amazon SageMakerの簡素化されたクイックセットアップエクスペリエンスの提供をお知らせいたしますこの新機能により、個々のユーザーはデフォルトのプリセットでAmazon SageMaker Studioを数分で起動することができますSageMaker Studioは、機械学習(ML)のための統合開発環境(IDE)ですMLプラクティショナーは、データの準備からモデルの構築まで、すべてのML開発ステップを実行することができます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us