Learn more about Search Results Adam - Page 6

僧侶の病気探偵:AI技術を活用した植物健康ガイド

イントロダクション 農業は私たちの文明の生命線であり、地球上の数十億人に栄養と食物を提供しています。しかし、この重要な産業は絶え間ない敵、つまり植物の病気に直面しています。これらの微小な脅威は作物に甚大な被害をもたらし、経済損失や食料不足を引き起こします。私たちの農業の遺産を守るカギは、最新の技術が介入する早期の検出と適時の対応にあります。この包括的なガイドでは、強力な機械学習ライブラリであるMonkを使用した植物の病気分類の旅に出ます。この記事の最後までに、人工知能を活用して植物の病気を効果的に特定し、対処するための知識を身につけることができます。 では、Monkがどのように私たちに力を与え、植物の病気分類のためのディープラーニングモデルを作成、訓練、最適化するかを探求していきましょう。しかし、技術的な側面に入る前に、この取り組みの重要性とMonkが重要な役割を果たす理由を理解するために舞台を設定しましょう。 学習目標 Monkソフトウェア/ライブラリの基本を理解する。 ローカルマシンまたは好きな開発環境にMonkをインストールして設定する方法を学ぶ。 機械学習における高品質なデータの重要性を探求する。 Monkを使用して、植物の病気の画像データセットを取得、前処理、整理して分類タスクに使用する方法を学ぶ。 植物の病気分類に適したディープラーニングモデルアーキテクチャの選択に対する洞察を得る。 Monk内でモデルを設定し微調整する方法を理解する。転移学習における事前学習済みモデルも含む。 この記事はData Science Blogathonの一部として公開されました。 実践ガイド:Monkによる最初の病気分類モデルの作成 このセクションでは、植物の病気分類のためのMonkモデルのステップバイステップのプロセスをご紹介します。機械学習に初めて取り組む方から経験豊富なデータサイエンティストまで、以下の手順に従って植物の病気分類の旅を始めましょう。 ステップ1:データ収集 この最初のステップでは、植物の病気分類プロジェクトに必要なデータセットを収集します。以下の手順に従ってデータを収集してください: すばらしいPlant Villageのチームがデータセットを収集しました 1. Kaggle APIトークンのアップロード: 以下のコードを使用してKaggle APIトークンをアップロードしてください。このトークンは、Kaggleからデータセットをダウンロードするために必要です。…

イメージセグメンテーション:詳細ガイド

画像セグメンテーションとは、コンピュータ(またはより正確にはコンピュータに保存されたモデル)が画像を取り込み、画像内の各ピクセルを対応するカテゴリに割り当てる能力を指します例えば、それは...

「科学、情熱、そして多目的最適化の未来」

カルロス・アルテミオ・コエジョ・コエジョ教授は、バイオインスパイアリングメタヒューリスティクスを通じた多目的最適化の分野での先駆者です 彼はトゥレーン大学でコンピュータ科学の博士号を修了しました...

『今日、企業が実装できる5つのジェネレーティブAIのユースケース』

様々な産業で、エグゼクティブたちはデータリーダーにAIを活用した製品を作り上げるよう求めていますそれにより時間の節約や収益の促進、競争上の優位性の獲得を目指していますまた、OpenAIのようなテックジャイアントも同様です…

トム・ハンクスがAI生成のディープフェイクにファンを警告

土曜日、オスカー受賞俳優はInstagramに投稿して、ファンに対して、俳優が歯のプログラムを推進するAI生成のビデオに注意を喚起しました投稿では、俳優は「気をつけてください!私のAIバージョンを使った歯のプランを宣伝するビデオが出回っていますが、私は全く関与していません...」と述べています

ランチェーン101:パート2c PEFT、LORA、およびRLでLLMを微調整する

この記事をより理解するために、前回のパートをご覧ください前回のパートでは、言語モデルの大規模なものについて話しましたモデルの微調整(または転移学習とも呼ばれます)は、機械学習の技術であり、以下のように利用されます...

「5つのステップでPyTorchを始めましょう」

このチュートリアルは、PyTorchとその高レベルのラッパー、PyTorch Lightningを使用した機械学習の詳細な紹介を提供しますこの記事では、インストールから高度なトピックまでの重要なステップをカバーし、実践的なアプローチでニューラルネットワークの構築とトレーニングを行う方法を強調して、Lightningを使用する利点を重視します

「生成AIによる法科学の進展」

はじめに 法科学における生成AIは、人工知能技術を応用してデータ、画像、または他の法科学に関連する証拠情報を生成することを指します。この技術は、画像や動画の分析、文書の偽造の検出、犯罪現場の再構築などの調査官のタスクを支援することで、法科学を革新する可能性があります。長い間、法科学は犯罪を解決するために物理的な証拠の細心の検査に依存してきました。しかし、技術の急速な進歩により、この分野は人工知能(AI)および特に生成AIを取り入れて能力を向上させるようになりました。本記事では、法科学における生成AIの実用的な応用と、これらの応用のいくつかに対するコードの実装について探求します。 https://www.analyticsinsight.net/wp-content/uploads/2021/08/AI-in-Forensic-Investigation-and-Crime-Detection.jpg 学習目標 生成AI(GANおよびSiameseネットワークを含む)を法科学の実践的なシナリオにどのように適用できるかを学ぶ。 画像再構築、指紋認識、文書の偽造検出のための主要な生成AIアルゴリズムを実装する方法を学ぶ。 AIを法科学の調査に使用する際の倫理的な考慮事項、データプライバシー、公正性の懸念を理解する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 生成AIによる画像再構築の向上 生成AIによる画像再構築の向上は、法科学において画像解析と証拠解釈の革新的な進歩として登場しました。この領域の研究論文では、生成対抗ネットワーク(GAN)や他の生成AI技術の重要なポテンシャルが強調されています。これらの革新的な技術により、法科学の専門家は監視カメラ、低解像度の写真、またはピクセル化された画像など、さまざまなソースから得られた画像を再構築して強化することができます。これにより、刑事捜査において貴重なサポートが提供されます。 特にGANは、ジェネレータとディスクリミネータからなるデュアルネットワークアーキテクチャを活用して、現実的で高品質な画像を生成します。さまざまな画像のデータセットでトレーニングすることで、GANは視覚データのパターン、テクスチャ、構造を理解することができます。法科学では、この技術により、ぼやけた、断片的、または不完全な画像から重要な詳細を明らかにすることができました。さらに、GANは顔認識や合成スケッチの生成にも使用され、法執行機関が潜在的な容疑者をより正確に特定するのに役立っています。犯罪現場の再構築や欠落した証拠の生成も、調査プロセスを革新し、より包括的かつデータ駆動型の分析を可能にしました。生成AIによる画像再構築の向上の研究が進むにつれて、複雑な犯罪事件の解決と正義の確保の可能性がますます期待され、現代の法科学における変革的な力として確立されています。 https://aihubprojects.com/forensic-sketch-to-image-generator-using-gan/ GANを用いた画像の高解像度化 import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import…

「ゼロからLLMを構築する方法」

「これは、大規模言語モデル(LLM)を実践的に使用するシリーズの6番目の記事です以前の記事では、プロンプトエンジニアリングとファインチューニングを通じて事前学習済みのLLMを活用する方法について詳しく調査しましたこれらに対して…」

農業におけるビジョン・トランスフォーマー | 革新的な収穫

はじめに 農業は常に人類文明の基盤であり、数十億人に生計と食料を提供してきました。技術の進歩により、農業の実践を向上させるための新たで革新的な方法が見つかっています。そのような進歩の一つが、Vision Transformers(ViTs)を使用して作物の葉の病気を分類することです。このブログでは、農業におけるビジョン・トランスフォーマーが、作物の病気の特定と軽減のための効率的かつ正確な解決策を提供することで、革命を起こしていることを探求します。 キャッサバ、またはマニオクまたはユカは、食事の主食から産業用途までさまざまな用途がある多目的な作物です。その耐久性と強靭さは、栽培条件の厳しい地域で不可欠な作物です。しかし、キャッサバの植物はさまざまな病気に対して脆弱であり、CMDとCBSDが最も破壊的なものの一部です。 CMDは、ホワイトフライによって伝播される複数のウイルスによって引き起こされ、キャッサバの葉に重度のモザイク症状を引き起こします。一方、CBSDは、2つの関連するウイルスによって引き起こされ、主に貯蔵根に影響を与え、食用に適さなくします。これらの病気を早期に特定することは、広範な作物被害を防ぐために重要であり、食料の安全保障を確保するために不可欠です。Vision Transformersは、自然言語処理(NLP)のために最初に設計されたトランスフォーマー・アーキテクチャの進化形であり、視覚データの処理に非常に効果的であることが証明されています。これらのモデルは、パッチのシーケンスとして画像を処理し、データ内の複雑なパターンと関係を捉えるために自己注意機構を使用します。キャッサバの葉の病気分類の文脈では、ViTsは感染したキャッサバの葉の画像を分析してCMDとCBSDを特定するために訓練されます。 学習成果 ビジョン・トランスフォーマーとそれらが農業にどのように適用され、特に葉の病気の分類においてどのように使用されるかを理解する。 トランスフォーマー・アーキテクチャの基本的な概念、自己注意機構などの理解し、これらが視覚データの処理にどのように適応されるかを学ぶ。 キャッサバの葉の病気の早期検出のために農業におけるビジョン・トランスフォーマー(ViTs)の革新的な利用方法を理解する。 スケーラビリティやグローバルなコンテキストなどのビジョン・トランスフォーマーの利点、および計算要件やデータ効率などの課題についての洞察を得る。 この記事は、Data Science Blogathonの一環として公開されました。 ビジョン・トランスフォーマーの台頭 コンピュータビジョンは、畳み込みニューラルネットワーク(CNN)の開発により、近年大きな進歩を遂げています。CNNは、画像分類から物体検出まで、さまざまな画像関連のタスクのための定番アーキテクチャとなっています。しかし、ビジョン・トランスフォーマーは、視覚情報の処理に新しい手法を提供する強力な代替手段として台頭しています。Google Researchの研究者たちは、2020年に「画像は16×16の単語に値する:スケールでの画像認識のためのトランスフォーマー」という画期的な論文でビジョン・トランスフォーマーを紹介しました。彼らは、もともと自然言語処理(NLP)のために設計されたトランスフォーマー・アーキテクチャをコンピュータビジョンの領域に適応させました。この適応により、新たな可能性と課題が生まれました。 ViTsの使用は、従来の方法に比べていくつかの利点を提供しています。それには以下のものがあります: 高い精度:ViTsは高い精度であり、葉の病気の信頼性のある検出と区別が可能です。 効率性:訓練された後、ViTsは画像を素早く処理できるため、現場でのリアルタイム病気検出に適しています。 スケーラビリティ:ViTsはさまざまなサイズのデータセットを処理できるため、さまざまな農業環境に適応できます。 汎化性:ViTsはさまざまなキャッサバの品種や病気のタイプに汎化することができ、各シナリオごとに特定のモデルが必要な必要性を減らします。 トランスフォーマー・アーキテクチャの概要 ビジョン・トランスフォーマーに入る前に、トランスフォーマー・アーキテクチャの核心的な概念を理解することが重要です。トランスフォーマーは、もともとNLPのために設計され、言語処理のタスクを革新しました。トランスフォーマーの主な特徴は、自己注意機構と並列化であり、より包括的な文脈理解とより高速なトレーニングを可能にします。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us